布勒的宗旨是创造创新,创造更美好的世界,并在所有决策过程中平衡经济、人类和自然的需求。数十亿人每天都接触布勒技术,因为这些技术满足了他们对食物和出行的基本需求。每天有 20 亿人享用由布勒设备生产的食物;10 亿人乘坐使用布勒解决方案生产的零件制造的汽车出行。无数人戴眼镜、使用智能手机、阅读报纸和杂志——所有这些都依赖于布勒工艺技术和解决方案。凭借这种全球影响力,布勒拥有独特的优势,可以将当今的全球挑战转化为可持续的业务。
弗劳恩霍夫 IAPT 的研究人员在项目过程中开发了多项创新。其中包括基于 2D 模板的三维植入物设计人工智能计算,目前这项技术已申请专利。工艺技术是另一项特殊的发展:由于植入物轴的结构非常精细,弗劳恩霍夫 IAPT 团队选择使用金属粘合剂喷射钛作为 3D 打印方法。这使得小型复杂的植入物能够以高精度制造。同时,轴的表面可以以更容易融入骨骼的方式构造。此外,该方法最大限度地减少了关节面的返工,关节面必须尽可能光滑和无摩擦。
• 供需 • 最终用户应用和关键增长动力/领域 • 工艺技术 • 设备应用组合 • 生产、资本支出、收入和封装 ASP • 3D 堆叠封装包括逻辑和 DRAM 晶圆:3D 堆叠封装包括 HBM、3DS DRAM、3D NAND、3D SoC/SoIC、3D 堆叠 CMOS 图像传感器 • 收入和 ASP 仅反映封装。不包括最终测试。 • **RF-SiP 封装中使用的 WLCSP 组件不包含在 WLCSP 类别中 - 这将在监视器的未来更新中提供 • SiP 封装级市场规模正在确定,不包括 SiP 晶圆级市场。
为了将该电极用于PEM水电解器,需要使用热压机制造由电解质膜和电极堆叠而成的大型MEA。但是,我们发现很难保持大型MEA的厚度均匀,并且需要以小于1毫米的精度对准MEA组件。为了以小于1毫米的精度对准3000cm2级MEA的组件,我们提高了压板的表面精度,选择了最佳缓冲材料,并设计了独特的对准工艺技术。我们成功地将施加在MEA上的压力变化降低到约10%,从而可以在不影响氢气生产性能的情况下制造大型MEA。我们将致力于尽早将大型MEA商业化,以实现P2G在社会上的广泛使用。
在过去的几十年中,数字和模拟集成电路的集成密度和性能经历了一场惊人的革命。虽然创新的电路和系统设计可以解释这些性能提升的部分原因,但技术一直是主要驱动力。本课程将研究促成集成电路革命的基本微制造工艺技术,并研究新技术。目标是首先传授构建微型和纳米器件的方法和工艺的实际知识,然后教授将这些方法组合成可产生任意器件的工艺序列的方法。虽然本课程的重点是晶体管器件,但许多要教授的方法也适用于 MEMS 和其他微型器件。本课程专为对硅 VLSI 芯片制造的物理基础和实用方法或技术对器件和电路设计的影响感兴趣的学生而设计。30260133 电子学基础 3 学分 48 学时
摘要。石油页岩是最重要的非常规的石油和天然气储层资源,其特征是大型地质储量,困难的开发技术和巨大的开发潜力。,由于成本问题,由于成本问题,随着常规的石油和天然气储层资源的发展和利用,它不能在大面积上进行利用,但它是未来石油开发的主要方向。基于将油页岩电加热的原位转化技术分类为原位转换工艺技术,电源TM技术,地热燃料燃料电池供暖技术,高压动力频率电动供热技术和其他电动供暖技术,本文在现有的电热技术方面为电动技术提供了用于发动机供应的现有电热技术的研究进度。
位于卡纳那川县的Kaisei,位于东京以外的80公里处,富士电影的高级研究实验室(图1)是创新中心和核心研发研究所。它是由各种研究部门(例如生物科学和工程实验室(BSEL))组织的,该部门着重于生物学研究领域,以及过程工程与技术中心(PETC),该工程技术中心(PETC)专门从事工艺技术,以实现最佳制造。利用了涵盖多种学科的丰富专业知识,例如成像和图像处理,材料科学和生命科学,Kaisei的研究人员致力于开拓新的和不同的技术,以期关注未来。协作气氛和人才熔炉鼓励跨学科知识共享,以应对复杂的挑战并开发创新的解决方案。
第 1 部分:执行摘要和范围简介集成电路发明 60 多年来,一直有人定期预测摩尔定律将终结。虽然设计和工艺技术方面正在进行重大创新,以继续推动向下一个节点的发展,但摩尔定律的经济效益即将终结,先进节点的一些关键性能指标正在趋于稳定,正如商业杂志《经济学人》2016 年 3 月 12 日的一篇文章所描述的“摩尔定律饱和”(图 1.1)。半导体行业正在实施 EUV、FinFET 和 FinFET 后继者。5 纳米节点已处于早期生产阶段,3 纳米节点即将到来。摩尔博士自己对摩尔定律技术终结的预测正在接近目标年份。2016 年 3 月 12 日文章中的信息在今天仍然具有现实意义。