约瑟夫森隧道结是几乎所有超导电子电路(包括量子比特)的核心。通常,量子比特的结是使用阴影蒸发技术制造的,以减少超导薄膜界面的介电损耗贡献。然而,近年来,亚微米级重叠结开始引起人们的关注。与阴影掩模技术相比,它既不需要角度相关沉积,也不需要独立的桥或重叠,而这些是晶圆级加工的重大限制。这是以在制造过程中破坏真空为代价的,但简化了多层电路中的集成,实现了截然不同的结尺寸,并能够在工业标准化过程中进行更大规模的制造。在这项工作中,我们展示了减法工艺制造重叠结的可行性。在一系列测试接触中,我们发现平均正常状态电阻的老化率很低,在 6 个月内仅为 1.6%。我们通过将结用于超导传输量子比特来评估结的相干性。在时间域实验中,我们发现我们的最佳设备的量子比特寿命和相干时间平均都大于 20µs。最后,我们讨论了我们技术的潜在改进。这项工作为采用先进材料和生长工艺的更标准化工艺流程铺平了道路,并为大规模制造超导量子电路迈出了重要一步。
硅自旋量子比特是用于大规模量子计算机最有希望的候选者之一,8 这得益于它们出色的相干性以及与CMOS技术的兼容性,可用于升级。先进的工业CMOS工艺流程可实现晶圆级均匀性和高器件成品率,但由于设计和操作条件不同,现成的晶体管工艺无法直接转移到量子比特结构上。因此,为了利用微电子行业的专业知识,我们定制了一条300毫米晶圆生产线,用于硅MOS量子比特集成。通过对MOS栅极堆栈进行精心优化和工程设计,我们报告了在毫开尔文温度下Si/SiOx接口上稳定均匀的量子点操作。我们提取了不同器件和各种操作条件下的电荷噪声,结果显示1 Hz时平均噪声水平低至0.61 μeV/√Hz,在某些器件和操作条件下甚至低于0.1 μeV/√Hz。通过对不同操作和设备参数下的电荷噪声进行统计分析,我们表明噪声源确实可以用两级涨落子模型很好地描述。这种可重现的低噪声水平,加上我们量子点的均匀操作,标志着 CMOS 制造的 MOS 自旋量子比特已成为成熟且高度可扩展的高保真量子比特平台。
I.简介 板级可靠性测试 (BLRT) 也称为互连可靠性测试。这是一种用于评估将 IC 封装安装到印刷电路板 (PB) 后各种电子封装(例如 IC 和区域阵列封装 (BGA、CSP、WLCSP 等)的焊料连接质量和可靠性的方法。热循环测试期间焊点的可靠性是一个关键问题。BLRT 所需的典型热循环条件为 -40°C 至 +125°C。[1,2] 这是为了确保在极端工作条件下的可靠封装性能。BLRT 的当前趋势是进行环境和机械冲击测试的组合,以确保组件在现场能够生存。在大多数情况下,这些是用户定义的测试,具有指定的验收标准,供应商必须在制造发布之前满足这些标准。本文介绍了通过 BLRT 测试对晶圆级芯片规模封装 (WLCSP) 射频开关进行的测试,并回顾了过程控制、测试结果、故障模式和经验教训。II.WLCSP 封装和组装工艺流程概述 WLCSP 封装组装包括晶圆探针、晶圆凸块、背面研磨、激光标记、晶圆锯、分割和芯片卷带。由于 IC 凸块为 200 微米,间距为 400-500 微米,因此这些封装未安装在中介层上或进行包覆成型,而是直接进行表面贴装。图 1 和图 2 显示了 WLCSP 封装的顶视图和后视图。
随着互连密度不断缩小,以及制造更细间距基板的成本不断上升,使用传统有机堆积基板的倒装芯片封装在细间距布线方面面临着重大挑战。为了满足这些需求,TSV 中介层应运而生,成为一种良好的解决方案 [1-3]。TSV 中介层提供高布线密度互连,最大限度地减少 Cu/低 k 芯片与铜填充 TSV 中介层之间的热膨胀系数 (CTE) 失配,并由于芯片到基板的互连更短而提高电气性能。TSV 中介层晶圆是通过在硅晶圆上蚀刻通孔并用金属填充通孔来制造的。业界常用的两种 TSV 方法涉及“先通孔/中通孔”和“后通孔”工艺流程。本文中的工作使用“先通孔/中通孔”流程,因为它提供了互连密度的最大优势。通常,使用深反应离子蚀刻 (DRIE) 工艺蚀刻 TSV 通孔以形成高纵横比通孔。 TSV 的直径通常为 10-20 微米,深度为 50-100 微米。TSV 的壁衬有 SiO2 电介质。然后,形成扩散屏障和铜种子层。通过电化学沉积用铜填充通孔。使用化学机械抛光/平坦化 (CMP) 去除铜覆盖层。使用标准后端制造工艺在中介层顶部形成 M1 – Mx 的互连线。中介层顶部涂有钝化层并形成微凸块焊盘。
NE 221 高级 MEMS 封装本课程旨在让学生为攻读 MEMS 和电子封装等更专业领域的高级课题做好准备,这些领域适用于各种实时应用,如航空航天、生物医学、汽车、商业、射频和微流体等。MEMS – 概述、小型化、MEMS 和微电子 -3 个级别的封装。关键问题,即接口、测试和评估。封装技术,如晶圆切割、键合和密封。设计方面和工艺流程、封装材料、自上而下的系统方法。不同类型的密封技术,如钎焊、电子束焊接和激光焊接。带湿度控制的真空封装。3D 封装示例。生物芯片/芯片实验室和微流体、各种射频封装、光学封装、航空航天应用封装。先进和特殊封装技术 - 单片、混合等、绝对压力、表压和差压测量的传感和特殊封装要求、温度测量、加速度计和陀螺仪封装技术、MEMS 封装中的环境保护和安全方面。可靠性分析和 FMECA。媒体兼容性案例研究、挑战/机遇/研究前沿。NE 235 微系统设计和技术 本入门课程涵盖 MEMS 换能器设计和系统开发的基本原理和分析。本课程以“NE222 MEMS:建模、设计和实施”中提供的背景知识为基础。本课程向学生介绍材料物理、弹性波和传播、换能器建模、MEMS 传感器和执行器设计以及 RF MEMS 组件分析。本课程还将开设基础实验课,演示超声波换能器、质量传感器、表面声波谐振器、惯性传感器等微系统。将介绍不同 MEMS 换能器的有限元建模、布局设计和设备测试方案。课程将使用测验、作业和项目进行评估。NE 310 光子技术:材料和设备
Komagataella phaffii (K. phaffii) (Pichia pastoris),也称为生物技术酵母,是一种在生物技术和制药行业中具有多种应用的酵母菌种。这种甲基营养酵母作为重组蛋白的生产平台引起了人们的极大兴趣。它具有许多优点,包括有效的分泌表达,便于纯化异源蛋白,细胞密度高,生长迅速,翻译后变化,以及整合到基因组中的稳定基因表达。在过去的三十年里,K. phaffii 还被精炼为一个适应性强的细胞工厂,可以在实验室环境和工业规模上生产数百种生物分子。事实上,迄今为止,使用 K. phaffii 表达方法已经生成了 5000 多种重组蛋白,占细胞总蛋白的 30% 或总释放蛋白的 80%。除了已获得许可的 300 多种工业工艺外,K. phaffii 还用于制造 70 多种商业产品。其中包括对工业生物技术有用的酶,包括木聚糖酶、甘露聚糖酶、脂肪酶和植酸酶。其他是生物制药,包括人血清白蛋白、胰岛素、乙肝表面抗原和表皮生长因子。与其他表达系统相比,这种酵母还被认为是合成亚单位疫苗的特殊宿主,而亚单位疫苗最近已被替代疫苗类型所取代,例如灭活/杀死和减毒活疫苗。此外,通过多层次优化方法,如密码子偏好、基因剂量、启动子、信号肽和环境因素,可以实现重组蛋白的高效生产。因此,尽管 K. phaffii 表达系统高效、简单且工艺流程明确,但仍需确定理想条件,因为这些条件会根据目标蛋白而变化,以确保最高的重组蛋白生成量。本综述介绍了 K. phaffii 表达系统、其在工业和生物制药蛋白质生产中的重要性,以及一些高效蛋白质生产的生物加工和遗传改造策略。K. phaffii 最终将继续作为一种强大的表达系统在研究领域和工业应用中做出贡献。
摘要。累积的碳纤维增强聚合物 (CFRP) 复合材料废料需要得到有效处理。到目前为止,最有效的热基回收技术,即热解,在英国和德国等发达国家已呈指数级增长,以实现工业规模。通常,即使是最轻微的错误也会导致如此大规模的操作环境(例如,> 1 吨/天的操作能力)中的不良结果和工作流程延迟。现有的半自动化和在某些情况下完全自动化的工厂应不断更新,以适应不同类别和体积的 CFRP 复合材料废料。为了克服此类研究差距和不精确的人工错误,提出了基于物联网 (IoT) 的框架。本文研究了基于物联网的框架在热解过程中回收 CFRP 复合材料废料的理论实现,以基于信息物理系统的原理管理该过程。所提出的框架由传感器和执行器组成,它们将用于收集数据并与中央管理进行通信,中央管理构建为一个平台,该平台将表达和操纵数据以满足回收过程的要求,并通过物理实体之间的逻辑关系进行计算建模。在这种情况下,管理单元可以是可控制的,也可以是远程监控的,以增加工厂的运行时间。我们的目标是提出一种可扩展的方法来改进回收过程,这也将有助于未来处理回收碳纤维的决策。具体来说,这项研究将超越该领域的最新技术,通过 (i) 自动计算废物的质量并调整运行时间、温度、大气压力和惰性气体流量(如果需要),(ii) 再生热量,以便在第一批回收后,高热值的树脂将被燃烧并释放能量,其产生的热量需要被困在炉内,然后再生到系统中,以及 (iii) 降低能耗并加快工艺流程时间。总之,提出的框架旨在提供用户友好的控制和温度监控,从而可以提高整个过程的效率,并避免可能的过程关闭,甚至通过热解反应器中的受控气氛形成焦炭。
UDC 66.045.1 Uliev L.M.,瓦西里耶夫 M.一个。PINCH — 焦化厂焦化产品加工工艺的集成简介。能源价格上涨迫使依赖能源的国家实现能源供应多样化,并加速实施提高工业生产能源效率的计划。根据2006年的结果,乌克兰GDP的能源强度为每1美元0.89千克常规燃料。美国。这一数字目前是欧洲国家中最高的。具体来说,波兰的GDP能源强度为0.34 kg/t。吨 / 美元。美国、德国 – 0.26、英国 – 0.23 [1].降低化工、冶金等行业的能源消耗尤为重要,因为燃料价格是这些行业生产成本的主要部分。本文研究了独联体国家典型的苯蒸馏和煤焦油蒸馏的工艺流程。粗苯是从直接焦炉煤气中用有机吸收剂吸收提取的,是一种复杂的化学(芳香)化合物混合物,其中主要成分是苯烃(苯及其同系物),其含量为(80– 90%!”[2]。先前已从所研究的工艺中提取了数据,针对现有的 ∆ T min(36 o C、20 o C 和 302 o C)构建了复合曲线,确定了回收能力为 17.44 MW,热电厂容量为 34.78 兆瓦,冷电厂容量为 33.5 兆瓦 [3]。本文介绍了两个苯蒸馏车间和一个煤焦油蒸馏车间的改造过程。热能整合。为了实施重建项目,选择了夹点分析方法,该方法已在化学[5–6]、石油化工[6–9]和焦炭化工[10–13]领域的研究中证明了其有效性。行业。该方法的优点是有可能实现项目的最小折现成本,这是由经济学和热力学定律决定的[4]。最佳重建方案的选择是通过实现 Δ T min 的值来实现的,在该值下减少的成本最小。该值是通过能源现值和资本成本现值之间的折衷实现的。使用“Hint”程序 [14] 设计的给定值与最小温差的成本依赖关系如图所示(图1).为了经济地最佳地整合所考虑的过程,有必要确定资本和特定成本的主要值,这些值会显著影响项目的现值。焦炉煤气用作加热热设施的燃料,其成本为107.5美元。每 1000 立方米 [15],考虑到每年有 8000 个工作小时,热力设施的价格将为 172 美元。美国每千瓦每年。制冷设施的价格为 24.5 美元。美国每千瓦每年。为了确定最低降低成本,我们将采用以下热交换设备的成本特征。热交换器的成本由表达式(1)确定:
电话:707-628-5107 电子邮件:jbahena@veeco.com 摘要 5G、物联网和其他全球技术趋势的需求,加上缩小工艺节点成本的增加,已导致向更集成的封装要求转变。扇出晶圆级封装、2.5D/3D IC 封装和异构集成等先进封装技术的出现,为更小尺寸、更高功能和带宽带来了潜力。为了实现这些技术,通常需要对器件晶圆进行背面处理或减薄。这就要求使用临时粘合材料将器件晶圆粘附到刚性载体晶圆上,以便在处理和加工过程中提供机械支撑。释放载体后,必须彻底清除器件晶圆上的临时粘合材料。许多此类粘合剂都暴露在高功率激光或高温下,这使得清除更具挑战性。临时键合材料去除的亚微米级颗粒清洁要求也达到了通常为前端处理保留的标准。这在 3D 工艺中尤其重要,例如混合键合,其中特征和间距尺寸接近 < 1 µm,清洁不充分会导致后续键合工艺失败。因此,必须仔细考虑所有处理步骤以满足严格的颗粒要求。这项工作研究了硅晶片上涂层和烘烤的临时键合材料的去除,重点是获得最佳颗粒结果的加工条件。通过进行试样级研究和测量表面特性,在烧杯级评估了几种化学物质。根据这些发现,使用可定制的单晶圆加工工具对 300 毫米晶圆进行了研究。关键词临时键合材料、湿法清洗、晶圆级封装、单晶圆加工。I.简介 虽然晶体管和节点缩放一直在不断进步,但相关的成本和复杂性要求采用其他途径来提高性能。最突出的是,先进封装中的 2.5D/3D 集成通过将不同尺寸和材料的不同组件集成到单个设备中,显示出巨大的前景 [1]。由于许多当前的集成工艺流程都需要对设备晶圆进行背面处理或减薄,因此使用临时键合和脱键合 (TBDB) 系统已被证明是必要的多种类型的集成技术已经得到开发,例如扇出型晶圆级封装 (FOWLP)、2.5D 中介层、3D 硅通孔 (TSV) 和堆叠封装 (PoP),具有高集成度、低功耗、小型化和高可靠性等预期优势 [1-3]。
UDC 66.045.1 Uliev L. M.,瓦西里耶夫 M.答:焦化厂 焦化 产品 加工 过程 的 夹点 集成 简介 . 能源价格上涨迫使能源依赖型国家实现能源供应多元化,并加速实施提高工业生产能源效率的计划。根据2006年的结果,乌克兰GDP的能源强度为每美元0.89千克常规燃料。美国。这一数字目前在欧洲国家中最高。具体来说,波兰的GDP能源强度为0.34千克力。吨 / 美元。美国、德国——0.26、英国——0.23 [1]。降低化工、冶金等行业的能源消耗尤其重要,因为燃料价格是这些行业生产成本的主要部分。本文研究了独联体国家典型的苯蒸馏和煤焦油蒸馏的工艺流程。粗苯是从焦炉煤气中通过有机吸收剂吸收提取的,是一种复杂的化学(芳香)化合物混合物,其中主要成分是苯烃(苯及其同系物),含量为(80–90)%。[2]。对所研究过程的数据提取工作已提前完成,针对现有的 ∆ T min(36 o C、20 o C 和 302 o C)构建了复合曲线,确定了 17.44 MW 的回收能力以及热电厂(34.78 MW)和冷电厂(33.5 MW)的容量 [3]。介绍了两个苯蒸馏车间和一个煤焦油蒸馏车间的改造过程。热能整合。为了实施重建项目,选择了夹点分析方法,该方法已在先前的化学[5–6]、石化[6–9]和焦化[10–13]行业中的研究中证明了其有效性。该方法的优点是有可能实现项目的最小折现成本,这是由经济学和热力学定律决定的[4]。最优重建方案的选择是通过实现 Δ T min 的值来实现的,在该值下减少的成本最小。该值是通过能源现值和资本成本现值之间的折衷实现的。使用“Hint”程序[14]设计的给定值与最小温差的成本依赖关系如图1所示。为了经济地优化整合所考虑的过程,有必要确定资本和特定成本的主要值,这些值会显著影响项目的现值。焦炉煤气用作加热热设施的燃料,其成本为107.5美元。假设每年有 8000 个工作小时,那么每 1000 立方米 [15] 热能公用事业的价格将为 - 172 美元。美国每 1 千瓦每年。制冷公用事业的费用为 24.5 美元。美国每 1 千瓦每年。为了确定最低降低成本,我们将采用以下热交换设备的成本特征。热交换器的成本由表达式(1)确定: