摘要 :增材制造 (AM) 是一项尖端技术,可提供高达 100% 的材料效率和显著的重量减轻,这将对飞机燃料消耗产生积极影响,并且具有很高的设计自由度。因此,许多航空航天公司都在考虑实施 AM,这要归功于这些好处。因此,本研究的目的是帮助航空航天组织在不同的 AM 技术中进行选择。为此,通过半结构化访谈收集了 (8) 位 AM 领域专家的原始数据,并与二手数据进行交叉引用,以确定在选择用于航空航天应用的 AM 设备时需要考虑的关键因素。专家们强调了四种 AM 技术:激光粉末床熔合 (LPBF)、电子束粉末床熔合 (EBPBF)、线弧 AM (WAAM) 和激光金属沉积 (LMD),认为它们最适合航空航天应用。本研究的主要成果是开发了一个比较框架,帮助公司根据其主要业务或特定应用选择 AM 技术。
《材料》(ISSN 1996-1944)于 2008 年创刊。该期刊涵盖 25 个综合主题:生物材料、能源材料、先进复合材料、先进材料特性、多孔材料、制造工艺和系统、先进纳米材料和纳米技术、智能材料、薄膜和界面、催化材料、碳材料、材料化学、材料物理、光学和光子学、腐蚀、建筑和建筑材料、材料模拟和设计、电子材料、先进和功能性陶瓷和玻璃、金属和合金、软物质、聚合物材料、量子材料、材料力学、绿色材料、通用材料。《材料》为投稿高质量文章和利用其庞大的读者群提供了独特的机会。
摘要背景:来自哈茨木霉的 L-赖氨酸-α-氧化酶是一种很有前途的抗癌、抗真菌和抗菌剂。深入探索其物理化学性质和可能的应用方式需要足够数量的蛋白质,而这又取决于微生物生产者的良好培养技术、酶软分离和纯化以及储存技术。方法:提出了一种改进的酶分离和纯化方法。采用特定的柱吸附剂组合,并采用氯化钠梯度洗脱来提高酶的产量。测试了短杆菌属代谢产物 (MP) 以及 Ulocladium sp. 和木霉属真菌代谢物的诱导影响。酶活性测定基于在过氧化物酶反应与 L-赖氨酸-α-氧化酶反应相结合的情况下检测氧化的二甲基联苯胺。还探索了一些酶特性。结果:改进后的分离纯化工艺使酶得率达到79%左右。所有短杆菌属菌株均能有效增强L-赖氨酸-α-氧化酶活性及其伴随活性。诱导的酶似乎特异性较低但热稳定性更高。讨论了改性酶的可能应用范围。磷酸盐缓冲液(pH=5.6)似乎是长期保存酶的最佳溶液。结论:检测到短杆菌属MP对L-赖氨酸-α-氧化酶有明显的诱导作用,并改进了其分离纯化工艺。关键词:抗菌剂、抗真菌、抗肿瘤、短杆菌、L-赖氨酸氧化酶、木霉、哈茨木霉 引用本文:Smirnova I、Neborak E、Shkinev V、Larichev V、Shneyder Y、Bashkirova I 等。短杆菌属代谢产物诱导哈茨木霉 L-赖氨酸-α-氧化酶及其分离纯化技术的改进。Avicenna J Med Biotech 2025;17(1):39-46。
美国商务部 (DOC)、国家标准与技术研究所 (NIST) 2025 财年 CHIPS AI/AE 快速、行业知情的可持续半导体材料和工艺 (CARISSMA) 竞赛资助机会通知 (NOFO) 2025-NIST-CHIPS-AIAE-Sustainability-01 根据资金情况,此 NOFO 寻求行业知情、以大学为基础的人工智能驱动的自主实验 (AI/AE) 合作的申请,包括研究和开发、教育和劳动力发展以及与可持续半导体材料和工艺相关的相关活动。如果成功,根据此 NOFO 颁发的奖项将支持下一代国内半导体制造的长期可行性,加速材料和工艺的发现、设计、合成和采用,以及培养满足行业技术、经济和可持续发展目标所需的新研究人员。公告类型:初始。
退火和淬火等热处理工艺对于确定金属材料的残余应力演变、微观结构变化和机械性能至关重要,残余应力在部件性能中起着更大的作用。本文研究了热处理对使用 LENS 制造的 AISI 1025 中残余应力的影响。开发并模拟了有限元模型以分析残余应力的发展。适用于熔融沉积成型 (FDM) 长丝生产中的工具和模具应用的 AISI 1025 样品是使用激光工程净成型 (LENS) 工艺制造的,然后进行热处理,即进行退火和淬火工艺。将所研究的热处理样品的材料微观结构、残余应力和硬度与原始样品进行了比较。结果表明,与原始样品相比,退火后,拉伸残余应力降低了 93%,导致裂纹扩展速率降低,尽管硬度显著降低了 25%。另一方面,淬火后记录到 425±14 MPa 的高拉伸残余应力,硬度提高了 21%。
摘要:NCA电池占市场份额的8%,文献缺乏回收研究和通往具有成本效益的回收过程的途径。目前的研究旨在开发NCA圆柱电池的湿法铝回收过程。细胞被排出,然后在浸出之前进行身体治疗。评估了三种不同的酸:H 2 SO 4,H 3 PO 4和柠檬酸。由于存在Al箔,因此不需要减少剂,从而降低了浸出成本。柠檬酸代表了一种更好的成本效益的选择,但固体 - 液体分离代表了该过程的缺点。H 2 SO 4 SO 4在90°C下浸出90分钟,固体 - 液体比为1/5和2.0 mol/l,而无需Cu浸出,Al通过沉淀分离,然后使用Cyanex 272进行溶剂提取,以进行CO分离。ni作为氢氧化物获得,LI结晶为硫酸盐。质量平衡表明,在湿法铝处理中,约有92%的LI,80%和85%的CO可以回收。纯度> 95%的产品可用于电池和不锈钢生产。该过程有可能具有低CO 2足迹,未来的研究将探索它。
摘要 – 本文提出了一种用于 EEG 信号记录的 4 通道模拟前端 (AFE) 电路。对于 EEG 记录系统,AFE 可以处理各种传感器输入,具有高输入阻抗、可调增益、低噪声和宽带宽。缓冲器或电流-电压转换器块 (BCV) 可设置为缓冲器或电流-电压转换器电路,位于 AFE 的电极和主放大器级之间,以实现高输入阻抗并与传感器信号类型配合使用。斩波电容耦合仪表放大器 (CCIA) 位于 BCV 之后,作为 AFE 的主放大器级,以降低输入参考噪声并平衡整个 AFE 系统的阻抗。可编程增益放大器 (PGA) 是 AFE 的第三级,允许调整 AFE 的总增益。建议的 AFE 工作频率范围为 0.5 Hz 至 2 kHz,输入阻抗大于 2 T Ω,采用 180nm CMOS 工艺构建和仿真。AFE 具有最低 100 dB CMRR 和 1.8 µVrms 的低输入参考噪声,可实现低噪声效率。该设计采用了 BCV 等新功能来增强输入多样性,与之前的研究相比,IRN 和 CMRR 系数表现出显着增强。可以使用该 AFE 系统获取 EEG 信号,这对于检测癫痫和癫痫发作非常有用。
摘要 — 粉末混合电火花加工 (PMEDM) 是一种非传统加工工艺。这种方法越来越多地用于加工复杂表面、由高硬度材料制成的零件。PMEDM 中三个不可或缺的组件是粉末、介电流体和电极。这些组件对加工过程的效率有很大影响。这项研究旨在为上述所有三个组件选择最佳类型。考虑的粉末类型、介电流体类型和电极材料类型的数量分别为十、三和七。使用两种方法排序质心 (ROC) 和排序和 (RS) 计算每个产品类别中每个标准的权重。在每种情况下,使用两种方法来对替代方案进行排序,即 Faire Un Choix Adéquat (FUCA)(法语)和替代方案测量和根据妥协解决方案排序 (MARCOS)。将从对替代方案进行排序的结果中找到最佳选择。还使用 Sperman 系数对替代方案的排序结果进行了敏感性分析。本研究发现,使用 FUCA 方法找到的最佳方案也是使用 MARCOS 方法找到的最佳方案,并且找到的最佳方案与所用的加权方法无关。关键词 — 粉末混合电火花加工 (PMEDM)、粉末、介电流体、电极、多标准决策 (MCDM)、公平选择 (FUCA)、替代方案测量和根据折衷解决方案排序 (MARCOS)、权重
他因使用虚拟现实来教授电池科学而于2019年获得法国教育创新奖。他是140多个出版物,11个受邀书籍章节,3份被邀请的编辑书籍和20份专利的作者。他应邀请在国际会议上提供120多个被邀请的全体会议/主题演讲/受邀的口头演讲,以及在一流的大学,学院和公司的60多名邀请研讨会上。他还是新伊拉斯mus+授予的I-MESC主计划的协调员(用于储能和转换的材料的跨学科性)。