发电机类型 全碳 混合 全电动 电力份额 % 0 30 100 总额定功率 kW 8,720 8,720 8,720 燃气燃烧器额定功率 kW 8,720 6,100 0 电气元件额定功率 kW 0 2,620 8,720 环境空气流速 kg/h 63,300 63,300 63,300 运行温度 °C 550 550 550 喷雾干燥粉末产量 (*) kg/h 21,200 21,200 21,200 总用电量 kW 7,850 7,850 7,850 热负荷系数 % 90 90 90 燃气燃烧器用电量 kW 7,850 5,230 0 CO 2 排放量 (**) t/年11,460 7,630 0 (*)泥浆含水量为 34%,粉末输出含水量为 6% (**)每年运行时间为 7,000 小时
混合材料在发动机设计中引起了人们的关注和兴趣。对于目前的一些发动机,风扇叶片的核心体由 3D 编织复合材料组成,而前缘则由钛制成。这些复杂复合材料翼型的制造通常涉及漫长的过程,首先将树脂注入最初由增强预制件填充的模具中(RTM 工艺 - 树脂传递模塑)。用于优化和控制工艺的相关成型工艺模拟通常与现实有很大不同,因为输入物质材料参数在空间和时间上都存在重要变化,而这些变化在模拟中没有(或很少)考虑。目前,空客和波音公司正在努力通过监控技术和RTM工艺的建模与仿真来提高复合材料制造工艺的稳健性和可靠性。因此,为了能够控制工艺并确保高质量的部件成型,制造系统(即注射工艺)应实时适应输入物质特性的变化条件,也适应工厂的任何变化甚至客户的需求。
使用 SF 6 和 CHF 3 气体的工艺 Muhammad Hidayat Mohd Noor 1 , Nafarizal Nayan 1,2 * 1 电气和电子工程学院 (FKEE), Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, MALAYSIA 2 微电子和纳米技术 - Shamsuddin 研究中心 (MiNT-SRC), Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, MALAYSIA *通讯作者指定 DOI:https://doi.org/10.30880/eeee.2022.03.02.010 2022 年 6 月 27 日收稿; 2022 年 7 月 24 日接受; 2022 年 10 月 31 日在线提供摘要:反应离子刻蚀 (RIE) 是一种用于微加工的刻蚀技术,也是干法刻蚀的方法之一,与湿法刻蚀相比具有不同的特性。RIE 中的反应等离子体的化学过程用于去除晶圆上沉积的材料。RIE 蚀刻机有几个可变因素,例如射频功率、压力、气体流速和蚀刻时间,这些因素对应于其蚀刻深度和蚀刻速率的输出参数。需要进行大量实验才能找到 RIE 的最佳设置,从而为输出蚀刻速率建立理想的条件。在本研究中,使用供给 RIE 系统的 SF 6 和 CHF 3 工艺气体对 Si 和 SiO 2 晶圆进行蚀刻。使用 Dektak XT Bruker 表面轮廓仪研究了蚀刻深度和蚀刻速率,并使用 3D 映射模式表征了蚀刻后的 Si 和 SiO 2 的表面粗糙度。结果显示了不同射频功率、时间和流速对蚀刻深度和速率的影响,从而可以选择最佳参数。关键词:反应离子蚀刻、RIE、等离子蚀刻、硅、二氧化硅
Mersen 制造标准通用“一刀切”XY 激光振镜扫描镜,孔径范围从 4 毫米到 100 毫米,可供单对使用,并配有一系列高品质反射涂层。我们的客户可以选择带或不带胶合安装的镜子,所有标准轴尺寸均可。此外,我们能够根据客户规格制造。我们可应要求提供不同等级 SiC 的 OEM 产品,最大尺寸可达 1000 毫米,几何形状也更大。
静电放电 (ESD) 引起的损坏是集成电路的主要失效之一。在当今集成电路所采用的 7nm FinFET 工艺中,由于 FinFET 栅极氧化层的厚度减小以及高 k 电介质的可靠性较低,在静电放电 (ESD) 冲击下极其脆弱[1-3],并且遭遇非致命的 ESD 冲击后,ESD 保护性能会逐渐下降[4,5]。一些 ESD 建模和仿真技术已被用于 FinFET 工艺,以帮助分析 ESD 冲击下的 ESD 保护特性[6-9]。ESD 保护二极管被认为是一种很有前途的 ESD 保护器件[6-8]。具有高鲁棒性的二极管串硅控整流器 (DSSCR) 也被认为是以前技术节点的 ESD 保护装置 [ 10 – 15 ],但由于其高漏电和闩锁的较大回弹,它不再适用于 7 nm 技术。FinFET 工艺的 ESD 设计仍然是一个巨大的挑战。目前还没有一种具有足够低触发电压 (Vt) 和高故障电流 (It2) 的高鲁棒性 ESD 保护装置。在本文中,我们提出了一种基于 7 nm FinFET 工艺的新型硅控整流器嵌入式二极管 (SCR-D)。制造并分析了具有不同关键设计的这种保护的特性。
碳纤维碳复合材料 (CFC) 也称为碳纤维增强碳复合材料 (CFRC),是一种由碳纤维和碳基体制成的先进材料。它结合了两种碳基体的理想特性。碳基体(耐热、耐化学性、低热膨胀系数、高热导率、低电阻)和碳纤维(高强度、高弹性模量)模制在一起,形成更好的组合材料。
摘要 — 印度尼西亚是世界第二大椰子生产国,其产品之一是椰果,椰果由椰子水通过发酵工艺加工而成。椰果是生物纤维素的一种来源,可用作高级隔音材料的原料。本研究的目的是确定生物纤维素椰果的干燥工艺,以用于隔音的潜在应用,并通过测试水分含量和扫描电子显微镜 (SEM) 分析形成的纤维素纤维。干燥过程在 (95 -100) o C 的温度下进行。在干燥的前 10 分钟内,椰果中遗忘的水蒸气似乎几乎是总水分含量的 ± (30-40)%,即游离水。这是因为椰果样品中所含的游离水含量仍然很大且容易释放,而在干燥的最后阶段,蒸发水分需要很长时间,因为它是结合水。干燥一直进行到获得恒定质量。本研究中平衡含水量 (Me) 的值采用亨德森方程,计算得出的值为 16.430828706902。在干燥结果中发现,干燥产生的生物纤维素椰果含有少量水分,真菌生长的可能性越来越小,从形态学上看生物纤维素可以用作隔音材料,因为它有孔隙和凹痕来容纳传入的声能,因此隔音应用的潜力很大。关键词:椰果、生物纤维素、隔音、吸音系数。1. 引言印度尼西亚是世界上第二大椰子生产国,椰子种植面积为 388 万公顷,如果使用比例为 97%(小农庄园),椰子产量最多可达 320 万吨。 34 年来,椰子种植园从 1980 年的 166 万公顷增加到 2017 年的 389 万公顷(工业部,2010 年)。与斯里兰卡和印度相比,印尼的椰子生产力仍然较低。无论是出口还是国内市场,对椰子制品的需求都在持续增长。椰子衍生产业可以通过多样化加工产品来发展,包括椰果、椰干、初榨油、油脂化学品和椰干。椰果的主要产品除了作为出口材料外,还可以通过多样化椰果衍生产品来利用其他潜力。将椰果中所含的生物纤维素用于生物片材、生物纤维素面膜、生物纤维纸浆和生物纤维粉,为产品多样化和增加出口提供了机会。目前,有很多向发达国家出口生物片材产品、生物纤维素面膜、生物纤维纸浆和生物纤维粉的需求 [10]。生物纤维素是一种由微生物发酵椰子水产生的多糖。椰果或其他使用微生物木醋杆菌的材料,如果将其放入在受控过程中富含氮和碳的椰子水中,它将能够形成椰果纤维。在这种情况下,细菌会产生酶,可以将糖排列成纤维素纤维链。在椰子水中生长的众多微生物中,成千上万的
摘要:NCA电池占市场份额的8%,文献缺乏回收研究和通往具有成本效益的回收过程的途径。目前的研究旨在开发NCA圆柱电池的湿法铝回收过程。细胞被排出,然后在浸出之前进行身体治疗。评估了三种不同的酸:H 2 SO 4,H 3 PO 4和柠檬酸。由于存在Al箔,因此不需要减少剂,从而降低了浸出成本。柠檬酸代表了一种更好的成本效益的选择,但固体 - 液体分离代表了该过程的缺点。H 2 SO 4 SO 4在90°C下浸出90分钟,固体 - 液体比为1/5和2.0 mol/l,而无需Cu浸出,Al通过沉淀分离,然后使用Cyanex 272进行溶剂提取,以进行CO分离。ni作为氢氧化物获得,LI结晶为硫酸盐。质量平衡表明,在湿法铝处理中,约有92%的LI,80%和85%的CO可以回收。纯度> 95%的产品可用于电池和不锈钢生产。该过程有可能具有低CO 2足迹,未来的研究将探索它。
他因使用虚拟现实来教授电池科学而于2019年获得法国教育创新奖。他是140多个出版物,11个受邀书籍章节,3份被邀请的编辑书籍和20份专利的作者。他应邀请在国际会议上提供120多个被邀请的全体会议/主题演讲/受邀的口头演讲,以及在一流的大学,学院和公司的60多名邀请研讨会上。他还是新伊拉斯mus+授予的I-MESC主计划的协调员(用于储能和转换的材料的跨学科性)。
摘要:TMAH 是一种季铵盐,由甲基化氮分子组成,在电子工业中广泛用作显影剂和硅蚀刻剂。这种物质有毒,摄入后会致命。它还会导致皮肤灼伤、眼部损伤和器官损伤。此外,TMAH 对水生系统具有长期毒性。尽管已知其毒性,但欧盟法规目前并未规定废水的排放限值(即排放浓度)。当前的情况需要研究含 TMAH 的工业废水处理工艺。这项工作旨在介绍电子和半导体行业 TMAH 废液降解处理工艺的成功案例。研究以中试规模进行,并证明了工艺可行性(技术和经济性)及其环境可持续性。该工艺处理三种高浓度有毒物质废液,被认为是创新的。