高强度铝合金,包括 2xxx、6xxx 和 7xxx 合金,在高温下强度较低,这是因为热暴露后沉淀物会粗化[7 和 9]。最近的研究报告称,由于 α-Al(MnFe)Si 弥散体的析出,3xxx 合金在室温和高温下均具有优异的力学性能[10 和 13]。α-Al(MnFe)Si 弥散体与基体部分共格,具有立方晶体结构[10,14]。有趣的是,α-Al(MnFe)Si 弥散体在 300℃ 时具有热稳定性,这提高了高温强度和抗蠕变性[12,13]。曾尝试通过添加合金元素和/或各种热处理来优化α-Al(MnFe)Si弥散体的特性,以期改善3xxx合金的高温力学性能[11、13、15和19]。刘和陈[12]报道,在375℃下加热48小时的一步法热处理促使大量α-Al(MnFe)Si弥散体析出,从而在300℃下实现3004合金的峰值弥散强化。后来,发现与在375℃下加热48小时的一步法热处理相比,在250℃下加热24小时和在375℃下加热48小时的两步法热处理可显著改善弥散体的特性以及300℃下的屈服强度和抗蠕变性[17]。李等人。 [13]研究了添加不同量的Si和Mg对3xxx合金组织和高温性能的影响,发现当Si含量为0.25wt.%、Mg含量为1.0wt.%时,α-Al(MnFe)Si弥散相的高温强化效果最好。刘等[16]研究发现,在Al-Mn-Mg 3004合金中添加0.3wt.%Mo可细化弥散相,并提高其在350℃以下的热稳定性。由于Fe、Si和Mn等合金元素在凝固过程中发生偏析,在沉淀热处理过程中,枝晶间区域总会形成无弥散相区(DFZ),从而降低弥散相的体积分数,降低合金的高温性能[11e13]。因此,在采用弥散强化时,必须尽量减少 DFZ。添加具有负偏析(ko > 1)的元素是减少 DFZ 数量的有效方法。据报道,Mo 可以最大限度地减少不同 Al 合金中 DFZ 的形成 [16,20,21],从而使弥散体的体积分数较大且分布均匀,最终获得更优的高温性能。尽管之前的研究报告显示弥散体强化可以使 Ale Mne Mg 3xxx 合金的高温性能得到显著改善,但大多数研究都局限于铸锭。事实上,工业工程零件通常需要材料经历大的塑性变形才能满足特殊的形状和性能要求。此外,热轧或挤压也能消除铸造缺陷,如夹渣、孔隙等,进一步改善材料性能[22e25]。张等[26]研究发现,室温预轧显著促进了纳米弥散相的形核,增加了Al-Mn-Si合金中弥散相的数量密度。但室温变形会增加开裂的风险,从而增加制造难度[27]。因此,有必要研究热变形工艺对弥散相组织及其相关力学性能的影响。
目前,ERP 系统用于管理物料清单 (BOM)、工艺路线、计划和生产订单生成,并将必要的数据发送到生产计划和调度解决方案。使用先进的生产计划和调度可在整个制造过程中提供详细的实时可见性和订单可追溯性,并在完成后将信息反馈给 ERP 系统。该公司向其客户发送详细的序列信息。“我们已经配置了生产计划和调度解决方案,以应对与 ERP 沟通时的特定限制和挑战,”该公司的生产副总裁说。
介绍了一种包括热集成在内的电转甲烷工艺设计的上层结构优化方法。沼气厂产生的二氧化碳被视为碳源。该上层结构包括七层中 13 种处于当前发展阶段的电转甲烷工艺替代工艺技术。针对不同的情形,确定了产品化学能量最高效的工艺和资本与年总成本最具成本效益的工艺。我们考虑通过公用设施进行间接热集成,在所有情形下,这被确定为能源效率和工艺成本的主要贡献者。产品甲烷必须满足进入天然气管网的要求。天然气管网的要求对最高效的工艺路线有直接影响。如果可以将氢气输送到天然气管网,则所需的工艺单元数量就会减少。此外,热交换器网络的扩展决定了效率和成本之间的权衡,而不是单元操作的选择。
众所周知,几乎所有半导体器件的制造工艺路线都伴随着各种低温和高温处理循环,这不可避免地会导致各种缺陷的形成,并对硅缺陷结构的发展和为改变半导体材料性能而引入的杂质形成的深中心(DC)的形成产生重大影响(Abdurakhmanov等人,2019年;Utamuradova等人,2006年;Utamuradova等人,2023年)。在生产各种结构和器件的半导体晶片的技术加工过程中,缺陷之间会发生各种相互作用,这些相互作用主要由晶格中具有最大迁移率的点缺陷决定(Normuradov等人,2022年;Turgunov等人,2020年)。晶体中的点缺陷是各种掺杂不受控制的技术杂质,它们既存在于间隙位置,也存在于替代位置,以及结构晶格缺陷 - 弗伦克尔对、空位和间隙原子。结构
波士顿金属公司正在通过 MOE 开辟一条新的初级炼钢工艺路线。与使用碳还原铁矿石的传统路线(即将铁与矿石中的氧分离)不同,MOE 工艺使用直流电还原铁矿石。矿石在 1,600°C 左右的氧化物电解质中熔化,穿过熔池的电子将铁与氧分离,产生的副产品是氧气,而不是正常的 CO 和 CO 2 混合物。请参阅下面的公式。结果是清洁、高纯度的液态金属,可以直接送往钢包冶金,而无需重新加热。该工艺可用于所有铁矿石等级。MOE 工艺消除了焦炭生产、铁矿石加工、高炉还原和碱性氧气炉精炼的需要。它还可以取代天然气供给的 DRI 生产。该公司还在探索该技术用于铌和钒等其他高价值金属,并正在巴西投资一家试验工厂。新技术预计将在 2026 年实现钢铁商业化。自 2019 年以来,RHI Magnesita 一直是 Boston Metal 的主要合作伙伴。
首件检验被定义为对两个关键要素的验证: 符合所有工程要求 演示稳定、可重复的流程 定义:首件检验计划 在首次生产运行零件之前进行首件检验 (FAI) 计划。 FAI 计划通常涉及: 在整个首件检验过程中要执行的活动以及负责这些活动的组织 需验证的设计特性 数字化产品定义 (DPD) 从 DPD 中提取产品实现所需的设计特性(未在 2D 图纸上完整定义),包括标称尺寸的公差。 确定 FAI 中要包含哪些具体的设计特性证据 确保使用经批准的特殊工艺、实验室和材料来源(如适用),并且适用的制造、计划、工艺路线和采购文件符合正确的规格 确定关键特性并满足关键项目要求(如适用)(有关关键特性的指导,请参阅 AS9103) 零件特定的量具和工具是否合格且可追溯(如适用) 决定工艺变化是否需要更新 FAI 首次生产运行零件:第一组由一个或多个零件组成的零件,这些零件是计划工艺的结果,旨在用于未来生产这些相同零件。数字产品定义 (DPD):