图 2 顶部,3D FID-MRSI 重建代谢物体积,具有回顾性加速。完全采样采集(无加速)在 70 分钟内完成,加速因子对应于 k 空间欠采样并相应地减少采集时间(例如 3,24 分钟;6,12 分钟)。彩色图针对从 0 到第 95 个百分位数的每个代谢物范围单独缩放。底部,在所有加速因子下相对于未加速结果为每个代谢物图计算的归一化 RMSE 和 SSIM。显示了来自两个不同位置的样本光谱,它们随加速度(无、3、5)的变化很小。LCModel 拟合与拟合残差一起显示。左下方,整个大脑平均残差的 RMS 随加速度保持不变
图1(a)设备的示意图。将封装在两个HBN薄片(紫色)中的BLG薄片(黑色)组成的异质结构放在金属后门(BG,深橙色)上。分裂的门(SG,浅橙色)和手指门(FGS,浅橙色)通过绝缘氧化铝层分开。金属触点(黄色)用于检测传输电流。(b)设备的有限偏置光谱测量。数字𝑁表示库仑封锁区域中的电子职业。(c)3 rd,第4和第5次COULOMB钻石的放大,从中提取第一壳能量δ𝐸SH1。红色箭头指示与激发态相对应的过渡线。左下方示意图说明了前5个电子的壳结构。(d)分别从正面(上图)和负SD分支(下图)提取第4个电子的激发状态能量。
除了此屏幕优化的 PDF 之外,我们的网站上还有一个内容完全相同的 PDF 版本。打印优化的 PDF 中的页数减少了大约三分之一,因此打印成本显著降低。可以使用左侧的导航侧边栏和文本中的内容来导航此屏幕优化版本。符号导航(左下方)到目录到 Acrobat 搜索功能文本中的引用内部引用(文档内)返回上一屏幕外部引用(在另一个文档中或在互联网上)为了顺利使用提供的导航,我们建议安装最新版本的 Adobe ® Acrobat ®。可在 www.adobe.com 免费下载 Adobe ® Acrobat ® Reader
• 备注:可为个别课程或整个计划添加备注。要添加备注,请点击备注栏中或学期计划名称右侧的“便签”图标(均在右下方面板中)。• 课程表详情:在左下方面板中,您可以切换到“课程表详情”选项卡以查看为计划选择的课程摘要。• 从计划中注册课程:请参阅“注册课程”帮助文档,获取有关将计划课程加载到注册的说明。• 修改计划:每个已保存的计划都可以编辑或删除。在提前计划区域中选择学期后,将列出所有已保存的计划。选择任何计划上方的编辑可修改该计划。
在11月19日访问摩纳哥参加一年一度的国庆日/主权王子节期间,玛卡里奥·道尔(Macario Doyle)大使参加了庆祝活动,包括大教堂的Te Deum,在宫殿广场上举行的令人印象深刻的全国游行,可记住的晚会和一个令人难忘的晚会,以及Labohème的表演,以及(左下是左下角): Ziegler,Stinson的合伙人和Venturi Lab的联合创始人Antonio Delfino。也从左到右左下方:ESA宇航员和零G创始人Jean-Francois Clervoy,Swissapollo的Antonio Delfino,Antonio Delfino,Lukas和Bettina Viglietti,以及法国法院Venturi Space的Xavier Chevrin。
如今的电影力求为观众带来全方位的感官体验。这不仅包括令人惊叹的视觉特效,还包括壮观的音效。如果屏幕左下方远处的一架飞机从头顶飞过,音响工程师希望观众也能听到声音从头顶飞过,并在右肩后方逐渐消失。这是怎么做到的?双声道立体声的发明是第一步。动作用两个独立的麦克风录制,并通过屏幕两侧的扬声器播放。这样,声音就可以跟随汽车在屏幕上移动。使用四声道可以增强效果,并在影院后面再加两个扬声器。20 世纪 80 年代,电影《地震》的制片人希望电影观众能感受到地面震动。在专门为这部电影设计的影院里,墙壁周围和座位下放置了许多大型扬声器。地震开始时,这些扬声器发出响亮的低频声音,导致座椅和地板震动。三维声音是声音技术的最新进展,它的作用不只是录制和重现声音。相反,音频工程师试图生成您在现场时听到的声音。计算机分析并重现您听到声音时发生的微小延迟和回声。想象一下,您附近的人掉下了一个酒杯。离事件稍近的耳朵会先听到声音。从天花板反弹的声音从上方传到您耳中。回声在几分之一秒后从房间后面传来,尽管时间延迟非常小
如今的电影旨在为观众提供全方位的感官体验。这不仅包括令人惊叹的视觉特效,还包括壮观的声音。如果屏幕左下方远处的一架飞机从头顶飞过,音响工程师希望观众也能听到声音从头顶飞过,并在右肩后方逐渐消失。这是怎么做到的?双声道立体声的发明是第一步。动作用两个独立的麦克风录制,并在屏幕两侧的扬声器上播放。这样一来,声音就可以跟随汽车在屏幕上移动。使用四声道可以增强效果,在影院后面再加两个扬声器。在 20 世纪 80 年代,电影《地震》的制片人希望电影观众能感受到地面震动。在专门为这部电影准备的影院中,墙壁周围和座位下放置了许多大型扬声器。地震发生时,这些扬声器发出响亮的低频声音,导致座椅和地板震动。声音技术的最新进展——三维声音,不仅仅是录制和重现声音。相反,音频工程师试图生成您在现场会听到的声音。计算机分析并重现您听到声音时发生的微小延迟和回声。想象一下,您附近的人掉下了一个酒杯。稍靠近事件的耳朵会先听到声音。从天花板反弹的声音从上方传到您耳中。回声在几分之一秒后从房间后面传来,尽管时间差很小
1)神经元搜索启动神经元搜索接口(有关详细信息,请参见部分示意图搜索)。在此页面上,用户可以在单个物种搜索和多人搜索之间进行选择。选择了这些选项之一并选择了物种,则将示意图搜索接口自动加载为默认值。单击Neuropil模型将显示所有神经元的神经元,以动态绘制的示意图。单击神经元将显示该单元格类型的配置文件页面。要返回搜索结果,请单击屏幕右上角的十字架。可选,可以通过在屏幕中心选择“选项卡”来搜索半审理显示选项(仅适用于单个物种模式)。这将加载所选物种3D重建的自动生成的横截面,并允许使用此界面搜索神经元。单击神经膜将突出显示所有连接的神经胶体,并将所有发现的神经元加载到搜索结果的列表视图中。“中央”选项卡中的3D选项允许显示结果,但不能充当搜索接口。存在搜索结果后,用户可以在三个显示选项之间自由切换。另外,在屏幕的底部,可以通过选择“专家搜索”选项卡(请参阅“专家搜索”)来启动专家搜索功能。列表视图结果:在屏幕的左下方,一个选项卡“搜索结果”显示了发现的神经元的数量。单击此选项卡将打开搜索结果的详细列表视图。
摘要 随着智能手机的普及和移动应用程序的普及,人们,特别是年轻人,花越来越多的时间与智能手机上各种各样的应用程序进行交互。这引出了一个问题:人们在使用应用程序时如何分配注意力到界面上。为了解决这个问题,我们在本研究中设计了一个包含两个会话的实验(即会话1:浏览原始界面;会话2:浏览去除颜色和背景后的界面),并结合眼动追踪系统。在被试浏览应用程序界面时,用眼动追踪仪记录被试的注意注视时长。将智能手机的整个屏幕划分为四个均匀的区域以探究注视时长。结果显示,与其他区域相比,被试在会话中对左下方区域的总注视时长明显更长(1)在会话2中,被试在底部的总注视时长得以保留,但左侧和右侧之间没有显著差异。与总注视时长类似,首次注视时长也主要集中在界面的底部区域。此外,通过评估手机操作的熟悉度和准确性来量化手机使用技能,并研究其与注视时长的关系。我们发现,在会话 1 中,左下角区域的首次注视时长与智能手机操作水平呈显著负相关,但在会话 2 中,两者之间无显著相关性。根据比率探索的结果,在两个会话中,感兴趣区域之间的首次注视时长与总注视时长之比并没有显著差异。本研究的结果为浏览应用程序界面时的注意力分配提供了见解,并且对应用程序界面和广告的设计具有启发意义,因为可以根据注意力分配来优化布局,以最大限度地传递信息。