鸵鸟(Struthio Camelus)是一只鸟,具有相当大的商业价值,涉及剥削其肉,皮革,羽毛和鸡蛋,包括贝壳。大多数肉都位于大腿和背部。鸟类的心脏与哺乳动物的心脏相似,除了某些特征,因为它相对较大并且收缩频率较高。它是圆锥形的,顶端仅由左心室形成。在鸵鸟中,心脏位于Ster Num的凹面表面上。它被尾尾,其长轴垂直于身体的腹壁。作为一种大型奔跑的鸟,鸵鸟需要一个足够的心血管系统。因此,需要对心脏正常形态的描述来开发这种鸟的商业剥削。屠宰后立即收集了一个成年雄性鸵鸟的心脏。器官固定在10%甲醛溶液中,其中浸入10天直到解剖。观察到表面结构并进行了光编码。然后将心脏从顶点打开到耳形,以描述内部结构和光照文献。外部心包在纤维上心包和浆液心包的内脏层中(脑膜)(胸膜)上有一层脂肪组织。中心很小;右心房比左边小。耳环是心房的延伸,并且比哺乳动物的肌肉更突出。对心脏的血液供应是由右冠状动脉(肺部躯干和右上耳中的)和左冠状动脉(肺部躯干和左耳中的)进行的,该动脉的分支与马相似。左上力图在左端的内壁上有两个褶皱,由薄但相对广泛的肌肉层和内膜心脏形成。在内表面上观察到左心室的壁比右心室和肉体小梁的壁厚得多。与哺乳动物中一样,左室室内瓣膜有三个阀,肌腱与乳头状肌肉有关。右心室瓣膜是心室壁的肌肉的折叠,没有肌腱或乳头状肌肉牵引它。心脏的整个内部表面衬有内膜内膜。分析的鸵鸟心与鸟类的心脏有相似之处,尽管左耳是与其他物种不同的特征。
摘要:听觉稳态反应(ASSR)是几种神经系统和精神疾病的转化生物标志物,例如听力损失,精神分裂症,双相情感障碍,自闭症等。ASSR是正弦脑电脑术(EEG)/磁脑电图(MEG)反应,该反应是由定期呈现的听觉刺激引起的。传统频率分析假定ASSR是一种固定响应,可以使用线性分析方法(例如傅立叶分析或小波)进行分析。然而,最近的研究报告说,人类的稳态反应是动态的,可以通过受试者的注意,清醒状态,精神负荷和精神疲劳来调节。由于三角乘积 - 和-SUM公式,在测得的振荡响应上的振幅调制可能会导致光谱宽或频率分裂。因此,在这项研究中,我们通过规范相关分析(CCA)和Holo-Hilbert光谱分析(HHSA)的组合分析了人类的ASSR。CCA用于提取相关的信号特征,HHSA用于将提取的ASSR响应分解为振幅调制(AM)组件(AM)组件和频率调制(FM)组件,其中FM频率代表快速变化的Intra频率,AM频率代表慢变化的频率。在本文中,我们旨在研究37 Hz稳态听觉刺激中ASSR响应的AM和FM光谱。与HHSA,37 Hz(基本频率)和74 Hz(第一个谐波频率)的听觉响应都成功提取。二十五个健康的受试者,并要求每个受试者参加两个听觉刺激课程,包括一个右耳和一个左耳和一个左耳的单膜稳态听觉刺激。检查AM光谱,37 Hz和74 Hz听觉响应均由不同的AM光谱调节,每个光谱至少具有三个复合频率。与传统的傅立叶光谱的结果相反,在37 Hz处看到频率分裂,并且在傅立叶光谱中以74 Hz的形式遮盖了光谱峰。所提出的方法有效地纠正了随时间变化的幅度变化而导致的频率分裂问题。我们的结果已验证了HHSA作为稳态响应(SSR)研究的有用工具,以便可以避免传统傅立叶频谱中振幅调制引起的误导或错误解释。
抽象背景与正常伤口愈合过程的任何偏差都会导致骨状或肥大性疤痕形式过度形成疤痕。材料和方法该研究包括120名具有乳子状的候选者,分为两组A和B,分别为60名患者。在手术切除后,A组接受了Angerginal 5-氟尿嘧啶(5-FU)和Triamcinolone乙酰酮(TCA)的联合疗法,而B组仅接受TCA,然后接受压缩疗法。结果八十七名患者的耳朵小叶有乳子状,螺旋上有25例(20.8%),耳朵上的多个位置有8(6.7%)。九十二(76.7%)的双侧有乳子状,左耳为18(15%),右耳为10(8.3%)。六十三(52.5%)属于第三名,65(54.2%)至第四名,8(6.7%)至生命的第五十年。A组和B的总体复发率分别为21.7和38.3%。在A组(男性:女性2:0)的2中观察到在3组(男性:女性3:1)的第2组中看到了3个月,在A组的7(男性:女性5:2)和B组(男性:女性8:5)的7组(在6个月中为女性:女性8:5),在A组4(男性:3:1)和4组(女性:女性3:1)和B组(男性3:1),男性为B(男性:女性5:1)。 总体而言,A组和B组分别报告了9和7的疼痛,分别从A组和B组燃烧3和1。 在2中发现了溃疡,在1中受伤1,在2组中进行瞬时色素沉着。在3组(男性:女性3:1)的第2组中看到了3个月,在A组的7(男性:女性5:2)和B组(男性:女性8:5)的7组(在6个月中为女性:女性8:5),在A组4(男性:3:1)和4组(女性:女性3:1)和B组(男性3:1),男性为B(男性:女性5:1)。总体而言,A组和B组分别报告了9和7的疼痛,分别从A组和B组燃烧3和1。在2中发现了溃疡,在1中受伤1,在2组中进行瞬时色素沉着。基于温哥华疤痕量表,随访的结果在3个月时平均为3.5,在A组为1年为4.2,在1年为4.8,在3个月时为3.8,在6个月为6个月,在B组B组1年为1年,为5.4,为5.4。结论在乳腺内乳突切除乳子骨后,与单独使用TCA相比,乳突切除后,肌内5-FU和TCA与压缩疗法的组合治疗方法的复发率较低。复发的机会在男性中比女性更常见。尽管与TCA结合使用Amarginal 5-FU具有比单独使用TCA的局部副作用更大的局部效应,但从较低的复发率和长期的结果可以克服这些副作用的轻度严重程度。
简介:脑机接口 (BCI) 尚未被主流采用作为控制范例,因为大多数 BCI 系统都很笨重、难以设置,并且在移动环境中通常表现不够好,无法取代现有的输入模式。然而,BCI 可能有望成为多模式系统的一部分,当用户的手不空闲和/或无法发出语音命令时,该系统可以增强交互,这通常是高度移动应用领域的要求。随着电极功能的最新进展以及移动设备和头戴式显示器处理能力的提高,现在可以在移动设备上实时获取、发送和处理 EEG 信号。这些改进使得构建可穿戴移动 BCI 成为可能,它可以为主流用户和残疾人提供替代的交互方法。本摘要描述了我们正在进行的设计和评估可穿戴移动 BCI 组件的工作中的两项试点研究。材料、方法和结果:在我们的第一项研究中,我们的目标是设计一个 BCI 来检测所有可穿戴组件的 SSVEP。谷歌眼镜 [2] 用于同时向参与者呈现两个闪烁的视觉刺激,频率为 13 Hz 和 17 Hz。我们的 EEG 放大器是一块 OpenBCI 板,我们使用定制的 3D 打印夹子将其夹在参与者的腰带上。我们使用三个电极:枕骨(Oz)作为信号、乳突作为接地、耳垂作为参考,来检测 SSVEP 信号。我们记录了 EEG 数据以供离线分析。在 10 个疗程中,使用图 1 所示的装置,我们可以检测到参与者正在关注两个刺激中的哪一个,对于 13 Hz 的准确率为 76%-84%,对于 17 Hz 的准确率为 67%-72%,对于 1 秒长滑动窗口 SSVEP 的 PSD 振幅谱作为特征,使用对每个刺激单独训练的 10 倍交叉验证 RF 分类器。我们将实验扩展到步行-秒表刺激场景,发现单个刺激 1 秒长滑动窗口 SSVEP 的准确率为 93%。我们第二项研究的目的是确定是否可以用易于制作的定制入耳电极替换头皮电极,该电极改编自 Looney [1] 讨论的耳电极设计。我们使用 eFit s 扫描仪创建了参与者左耳的模型。然后,我们 3D 打印了一个耳机,并放置了 3 个预凝胶的 Ag/AgCl 接地板电极,并用银箔覆盖,使它们接触外耳的耳道壁。将用于比较的入耳电极和 Oz 连接到可穿戴 OpenBCI 系统和距离用户 6 厘米的闪烁的 13Hz LED。如图 2 所示,枕骨区域的峰值 SSVEP 幅度高于耳道,但 SNR 也增加了,因此使用可穿戴 BCI 从耳朵和头皮的检测准确率可达到 80-90%。
