在2021年,抗菌耐药性(AMR)与470万死亡有关,主要影响低收入和中等收入国家(LMIC),但2024克报告的预测表明,靶向革兰氏阴性细菌的新型抗生素的发展将导致AMR Burden的减少。响应这一全球健康优先事项,Novo Nordisk Foundation(NNF),Wellcome和Gates Foundation(GF)共同发起了一项新的计划,革兰氏阴性抗生素发现Innovator(GR-ADI),以推动革兰氏阴性病原体的早期药物发现创新。GR-ADI将充当一个财团,在多个资助者,研究机构和行业合作伙伴之间共同工作。财团将通过此盛大的提案请求(RFP)组成,重点是
胶体材料和界面是流行的跨学科领域,涉及物理,化学,生物学和其他学科的相交。胶体材料的结构单元的粒径位于中尺度上,在分子和宏观材料(例如高比表面积,量子尺寸效应和界面相互作用)之间具有独特的胶体材料(Xia等,2000)。其中,界面现象在胶体材料中尤为重要,因为界面的性质显着影响胶体颗粒的稳定性,组装行为和功能性能。因此,该领域的核心在于研究胶体的制备,结构和特性及其在各个接口处的相互作用。胶体材料的开发具有悠久的历史,涵盖了从四世纪制作的Lycurgus杯,到1857年的胶体“ Ruby”黄金的合成,再到2023年诺贝尔奖的诺贝尔化学奖,用于发现和合成纳米颗粒的量子量,覆盖了千年来。胶体科学的基础工作始于20世纪中叶。在1950年,Victor La Mer和Robert Dinegar开发了一种用于产生单分散液体的理论和过程,该溶质溶液允许具有均匀颗粒尺寸的胶体的控制生产(Lamer and Dinegar,1950年)。这是一个关键时刻,为纳米技术和材料科学的未来发展奠定了基础。这些进步不仅大大扩展了材料数据库,而且增强了实际应用的生产可扩展性。在数十年中,胶体材料的合成取得了重大进展,利用诸如溶胶 - 凝胶过程,水热合成,超声剥落和化学蒸气沉积等技术,以实现具有可控制的尺寸和形态的高质量纳米颗粒(Yin and andivisatos,2005年)。近年来,研究将重点转移到具有独特光学,电子和催化特性的胶体材料的合成和应用中。中,具有等离子效应的胶体(AU,Ag,Cu等。)具有高灭绝系数和显着的局部场增强作用,是光学相关材料和设备的重要组成部分(Linic等,2011)。多亏了纳米材料合成中的突破,已经合成了各种维度,形态和组成的等离子纳米材料。值得注意的是,手性等离子体胶体金属材料的合成以及等离子胶体材料的周期表的提议被认为是胶体材料开发中的重要里程碑(Lee等,2018; Tan等,2011),使胶体材料合成技术及其在专业化学中的应用中越来越多地越来越多。此外,半导体纳米晶,量子点和凝胶也是胶体材料和界面的关键研究方向(Reiss等,2009)。
无论您是首席执行官、首席财务官、转型领导者还是业务领导者,全球能力中心 (GCC) 或全球业务服务 (GBS) 的出现已不再仅仅是一个好主意。相反,它是组织运营战略中的关键战略杠杆,需要积极考虑,因为它对盈利能力、竞争力、组织敏捷性和创新能力具有重大影响。
在光学量子计算和通信框架中,主要目标是构建接收节点,使用单个固定量子位对传入光子实施条件操作。特别是,对可扩展节点的追求推动了腔增强自旋光子接口与固态发射器的发展。然而,一个重要的挑战仍然是,以确定性的方式产生稳定、可控、自旋相关的光子状态。在这里,我们使用电接触柱状腔,嵌入单个 InGaAs 量子点,以展示单个电子自旋对反射光子引起的巨大极化旋转。引入了一种完整的层析成像方法来推断在存在自旋和电荷波动的情况下,由特定自旋状态决定的输出极化斯托克斯矢量。我们通过实验接近庞加莱球中条件旋转π2、π和π2的偏振态,外推保真度分别为(97±1)%、(84±7)%和(90±8)%。我们发现,增强的光物质耦合,加上有限的腔双折射和降低的光谱波动,可以针对庞加莱球中的大多数条件旋转,同时控制经度和纬度。这种偏振控制可能对使自旋光子接口适应各种量子信息配置和协议至关重要。
s n Bose在量子统计上的开创性工作为开发现代量子技术(包括Bose-Einstein凝结,量子超导性和量子信息理论)铺平了道路。一半的宇宙中的基本粒子以他的名字命名-Boson。该会议强调,23个国家已经建立了国家量子任务,印度在国际水平上做出了重大贡献,尤其是在量子算法领域。
结果:在这项研究中的3,643个人中,有270(7.41%)有慢性便秘诊断。根据经过全面调整的多种逻辑回归分析,饮食锌摄入量的增加与便秘的发病率降低有关(OR = 0.78,95%CI:0.68-0.89),其显着性在P <0.05。考虑了几个因素,与参考组相比(第一三静脉)相比,第三三位数的优势比为0.85(0.74,0.98),统计显着性为p <0.05。此外,亚组分析在大多数群体中没有相关性,而在男性和饮酒者,尤其是男性和饮酒者中发现了一定的负相关性。总而言之,这项研究发现锌消耗与慢性便秘的患病率之间存在负相关。需要深入的前瞻性研究来充分检查锌对慢性便秘的长期影响。
生成的AI:OpenAI的GPT-4和Google Bard之类的模型已彻底改变了内容的生成,实现了类似人类的文本,图像和代码创建。跨越教育,医疗保健和创意产业的应用。多模式AI:Meta的Llama和Openai的Dall·E 3结合了文本,图像和视频处理,使AI系统能够理解和生成多种格式的输出。AI在药物发现中:基于AI的平台,例如DeepMind的Alphafold,已经预测了科学已知的几乎每种蛋白质的结构(截至2023年),加速了医学研究和药物开发。代码的生成AI:Github的Copilot X(2023)和OpenAI的Codex Automate Automate软件开发等工具,从而提高了开发人员的生产率和编码效率。语音中的生成AI:Elevenlabs和Vall-E(Microsoft,2023)启用高质量的语音综合,革新虚拟助手,有声读物和客户服务中的应用程序。自治代理:AI模型(如Autogpt和Babyagi)在没有人类干预的情况下执行多步自主任务,从而超越了单任务重点的AI能力。
* 通讯作者:Serge Mignani,巴黎笛卡尔大学,巴黎西岱大学 PRES Sorbonne,CNRS UMR 860,化学、生物化学、药理学和毒理学实验室,45, rue des Saints Peres,75006 巴黎,法国; CQM-马德拉化学中心、MMRG、马德拉大学、Penteada 校区、9020-105 丰沙尔、葡萄牙。 serge.mignani@staff.uma.pt;石向阳,CQM-马德拉化学中心,MMRG,马德拉大学,Penteada 校区,9020-105 丰沙尔,葡萄牙;东华大学化工与生物技术学院,上海 201620。 xshi@dhu.edu.cn; Jean-Pierre Majoral,CNRS 协调化学实验室,205 route de Narbonne,31077 图卢兹,Cedex 4,法国;图卢兹大学,118 route de Narbonne,31077 图卢兹,Cedex 4,法国。 majoral@lcc-toulouse.fr 学术编辑:丁建勋,中国科学院长春应用化学研究所
耳兄弟姐妹,新年快乐!我希望每个人都在过去几天席卷南国的那些破坏性的风和大火中,每个人都很安全。关于随机影响洛杉矶各种口袋的电动停电的听力非常令人不安。实际上,由于空气质量和可能的撤离命令,我们不得不在本周初关闭帕萨迪纳总部。最后,我们的思想和祈祷向我们的兄弟姐妹们发出,遭受了西区,阿尔塔德纳(Altadena)以及可能突然出现的其他地区的大火毁灭。我们希望每个人都有一个回到今晚的家,他们的家人很安全。在工作方面,2025年已经塑造了一个有前途且繁忙的一年,许多项目在整个南加州都在网上进行。会议中心的改建将于今年开始,其中一些
了解美国大平原(USGP)的氢化气候极端(USGP)对于有效的水资源管理,农业系统的弹性以及缓解气候变化影响至关重要。这项研究研究了USGP中的氢化气候状况的改变,重点是使用网格的Prism气候数据集中的降水数据,过去119年(1904- 2022)在过去119年(1904-2022)中的年度降水趋势和极端。我们将年度降水总数分为六类的氢化气候极端:(1)孤立的湿极端,(2)孤立的干燥极端,((3)干燥的重复极端极端极端,(4)(4)潮湿到湿的重复反复出现的极端极端,(5)(5)干燥的旋转鞭打极端的极端极端,以及(6)湿至湿的鞭打般的鞭打极端极端。“重复出现”和“鞭打”都是化合物极端的类型。为了评估棱镜数据的准确性,我们首先将年度Prism降水总数与整个地区的气象站进行了比较。我们发现在257个站中251个站点的相关性(R²≥0.75),几乎没有整体偏见,这表明棱镜数据对于年度降水动力学的区域尺度表征可靠。从年度降水量总计,我们观察到东部和北USGP的大部分趋势都显着增加。从氢化气候的极端情况下,我们观察到,孤立的湿和干燥极端物往往在USGP上分布相当均匀,而化合物极端却显示出更为明显的空间模式。这些发现对美国大平原的水资源管理和农业系统具有重要意义,强调了需要适应不断变化的氢化气候条件的自适应策略。干燥的重复极端极端,而潮湿潮湿的重复极端极端在明尼苏达州,爱荷华州,内布拉斯加州,内布拉斯加州和北达科他州北达科他州 - 南达科他州边境地区。