多倍体巨癌细胞 (PGCC) 的特征是存在单个增大的细胞核或多个细胞核,与肿瘤进展和治疗耐药性密切相关。这些细胞对细胞异质性有重大影响,可能由各种压力源引起,包括放射、化疗、缺氧和环境因素。PGCC 的形成可以通过诸如核内复制、细胞融合、胞质分裂失败、有丝分裂滑移或细胞同类相食等机制发生。值得注意的是,PGCC 表现出与癌症干细胞 (CSC) 相似的特征,并通过不对称分裂产生高度侵袭性的子代。PGCC 及其子代的存在对于赋予对化疗和放疗的耐药性以及促进肿瘤复发和转移至关重要。本综述全面分析了 PGCC 的起源、潜在形成机制、压力源、独特特征和调控途径,以及针对这些细胞的治疗策略。目的是增进对 PGCC 起始和进展的理解,为肿瘤生物学提供新的见解。
摘要:随着当今社会的快速发展,交通环境变得越来越复杂。作为智能车辆的重要组成部分,轨迹跟踪因其稳定性和安全性引起了极大的关注。在高速工作等极端工作条件下,准确性和不稳定性很容易发生。在本文中,为分布式驱动车辆提出了一种轨迹跟踪控制策略,以确保在高速和低固定限制条件下进行横向稳定性。模型预测控制器(MPC)用于控制前轮角度,并且设计了粒子群优化(PSO)算法以适应MPC控制参数。滑动模式控制器控制后轮角度,并且通过分析β-来判断车辆不稳定性度。β相平面。在本文中设计了不同不稳定性度的控制器。最后,扭矩分隔器的设计目的是考虑驱动防滑。设计的控制器通过CARSIM和MATLAB-SIMULINK共模拟验证。结果表明,本文设计的轨迹跟踪控制器有效地提高了在确保稳定性的前提下的跟踪精度。
摘要:通过螺旋桨设计方法与粒子群优化 (PSO) 相结合,开发了一种降低螺旋桨驱动飞机能耗的航空结构算法。优化过程中考虑了多种螺旋桨参数,包括每个螺旋桨截面的翼型几何形状。螺旋桨性能预测工具采用收敛改进的叶片元素动量理论,该理论由从 XFOIL 和经过验证的 OpenFOAM 获得的翼型气动特性提供。根据实验 NACA 4 位数据估计失速角校正,并在出现收敛问题时使用。对气动数据进行校正以考虑压缩性、三维、粘性和雷诺数效应。根据实验数据拟合提出了旋转校正系数。采用基于欧拉-伯努利梁理论的结构模型,并根据有限元分析对其进行验证,同时讨论了离心力的影响。进行了一个案例研究,将弦长和螺距分布与涡流理论的最小损失分布进行了比较。使用印刷螺旋桨进行风洞试验,以得出整个程序的可行性以及 XFOIL 和 CFD 最佳螺旋桨之间的差异。最后,将最佳 CFD 螺旋桨与具有相同直径、螺距和运行条件的商用螺旋桨进行比较,显示出更高的推力和效率。
机器,磁共振成像(MRI)和核磁共振(NMR)。我们报告了由两个矩形Y-BA-CU-O(YBCO)散装单晶粒组成的大容量组件的脉冲场磁化(PFM)的系统研究,并在各种温度下紧邻。由数值分析支持的磁通量密度的动态变化的测量结果表明,脉冲场兴起的诱导筛选电流可能会大大增强连接处的区域的磁通密度,从而导致不均匀的通量渗透,并增加了该区域磁通量的增加。场和电流之间的这种耦合可促进磁通量穿透,并将峰值捕获的场从3.01 t提高到散装单晶粒的3.01 t到30 K时的大容量组件的3.11 t,从而将磁化效率从80%提高到90%。通过使用两步的多脉冲PFM工艺,单个散装单粒和散装组件的峰值捕获场分别为单个散装单粒和散装组件进一步增强至3.39 t和3.31 t。关键字:通量跳跃,高温超导体,磁通量繁殖,捕获的场磁铁1。简介
总结系统生物学中的一个主要挑战是了解基因调节网络(GRN)中的各种基因如何共同执行其功能和控制网络动态。在具有数百个基因和边缘的大型网络的情况下,该任务变得极为难以解决,其中许多具有冗余的调节作用和功能。现有的模型减少方法通常需要对动态系统及其响应动力学参数的详细数学描述,而动力学系统通常不可用。在这里,我们提出了一种用于使用基于合奏的数学建模,降低维度降低和通过Markov Chain Monte Monte Carlo方法优化基因的数据驱动的大grn,名为Sacograci的粗粒度大GRN,称为Sacograci。sacograci需要网络拓扑作为唯一的输入,并且可以抵抗GRN中的错误。我们通过合成,基于文学和生物毒素的GRN进行基准并证明其用法。我们希望Sacograci能够增强我们建模复杂生物系统基因调节的能力。
大多数公司继续限制对财产巨灾风险的敞口 过去几年,再保险公司业绩的波动不仅是受到传统自然灾害事件的影响,还受到次生灾害增长、新冠疫情以及最近的乌克兰-俄罗斯冲突的影响。总体而言,金融、经济、社会和地缘政治的不确定性加剧了这一波动。2017 年和 2018 年自然灾害活动的加剧成为风险态度的转折点。尽管全球再保险领域资本充足,但财务业绩的不稳定以及大多数参与者无力满足其资本成本,对投资者的风险承受能力提出了考验。这在保险连结证券 (ILS) 市场中更为明显,该市场在经历一段快速扩张期后,进入稳定期,并在资本配置方面经历了显著的质量飞跃。
大多数公司继续限制对财产巨灾风险的敞口 过去几年,再保险公司业绩的波动不仅是由传统的自然灾害事件推动的,还受到次生灾害增长、疫情以及最近的乌克兰-俄罗斯冲突的影响。总体而言,金融、经济、社会和地缘政治的不确定性加剧了这种情况。2017 年和 2018 年自然灾害活动的加剧成为风险态度的转折点。尽管全球再保险部门资本充足,但财务业绩的不稳定以及大多数参与者无法满足其资本成本,使投资者的风险承受能力受到考验。这在保险相关证券 (ILS) 市场中更为明显,该市场在经历了一段快速扩张期后,趋于平稳,并在配置资本时经历了显著的质量飞跃。
抽象动机:由于DNA测序的进步,现在常规地进行了环境微生物群落的分类学分析。确定这些群落在全球生物地球化学周期中的作用需要鉴定其代谢功能,例如氢氧化,还原和碳固定。这些功能可以直接从宏基因组学数据中推断出来,但是在许多环境应用中,MetabarCoding仍然是选择的方法。从元法编码数据及其整合到地球化学循环的粗粒表示中,代谢功能的重建仍然是当今有效的生物信息学问题。结果:我们开发了一条称为Tabigecy的管道,该管道利用分类学官员来预测构成生物地球化学周期的代谢功能。在第一个步骤中,Tabigecy使用该工具Esmecata从输入液位中预测共识蛋白质组。为了优化此过程,我们生成了一个预先计算的数据库,其中包含来自Uniprot的2,404个分类单元的信息。使用BigeCyhmm搜索了共有的蛋白质组织,BigeCyhmm是一个新开发的Python软件包,依靠隐藏的Markov模型来识别参与生物地球化学周期代谢功能的关键酶。然后将代谢功能投射到周期的粗粒表示上。我们将塔博基(Tabigecy)应用于两个盐洞数据集,并通过对样品进行的微生物活性和水力化学测量结果验证了其预测。结果突出了研究微生物群落对地理化学过程的影响的方法。关键字:微生物群落,生物地球化学周期,代谢功能,分类学官员
摘要。在有丝分裂纺锤体中,微管在中期通过捕获键附着在动粒上,微管解聚力引起随机染色体振荡。我们研究了纺锤体模型中的协同随机微管动力学,该模型由一组平行微管组成,这些微管通过弹性接头附着在动粒上。我们包括微管的动态不稳定性以及弹性接头对微管和动粒的作用力。采用基于福克-普朗克方程的平均场方法,对外力作用于动粒的单侧模型进行分析求解。该解建立了微管集合的双稳态力-速度关系,与随机模拟一致。我们推导出双稳态的接头刚度和微管数的约束。单侧纺锤体模型的双稳态力-速度关系导致双侧模型中的振荡,这可以解释中期随机染色体振荡(方向不稳定性)。我们推导出中期染色体振荡的连接体刚度和微管数的约束。将极向微管通量纳入模型,我们可以解释实验观察到的极向通量速度高的细胞中染色体振荡的抑制。然而,在存在极向喷射力的情况下,染色体振荡持续存在,但幅度减小,姊妹动粒之间有相移。此外,极向喷射力是必要的,以使染色体在纺锤体赤道处对齐,并稳定两个动粒的交替振荡模式。最后,我们修改了模型,使得微管只能对动粒施加拉力,从而导致两个微管集合之间发生拉锯战。然后,到达动粒后诱发的微管灾难是刺激振荡的必要条件。该模型可以定量再现 PtK1 细胞中动粒振荡的实验结果。
关键词 路径规划,粒子群优化,广义 PSO,光学避障,无人机,无人机编队。摘要 本文研究了多旋翼无人机(UAV)在编队形状中协作检查周围表面的路径规划技术问题。我们首先将问题描述为在复杂空间中规划编队质心路径的联合目标成本。然后提出了一种路径规划算法,称为广义粒子群优化算法,用于在避开障碍物并确保飞行任务要求的同时构建最佳的可飞行路径。然后结合路径开发方案为每架无人机生成相关路径以保持其在编队配置中的位置。进行了仿真、比较和实验以验证所提出的方法。结果表明,使用 GEPSO 的路径规划算法是可行的。缩写