建模连续时间动力学构成了基础挑战,并且在复杂系统中发现组件相关性具有增强动态建模的效率的希望。具有普通微分方程的Ingrating Graph神经网络的流行方法表现出了有希望的性能。但是,他们无视图表上关键的签名信息潜力,阻碍了他们准确捕获现象的能力并导致了差异。为了回应,我们引入了一种新颖的方法:签名的图形神经顺序差分方程,熟练地解决了误乘签名的信息的局限性。我们提出的解决方案具有灵活性和效率。为了证实其效率,我们将设计的策略无缝地整合到三个杰出的基于图的动态建模框架中:图形神经常规微分方程,图形神经控制的微分方程和图复发的神经网络。严格的评估包括来自物理和生物学的三种动态场景,以及四个真实现实世界流量数据集的审查。的经验结果非常优于基准的三重奏,强调了我们所提出的方法促进的实质性增强。我们的代码可以在https://github.com/beautyonce/sgode上找到。
非线性模型预测控制(MPC)是一种灵活且越来越流行的框架,用于合成可以满足状态和控制输入约束的反馈控制策略。在此框架中,在每个时间步骤中都解决了以非线性动力学模型为特征的一组动力学约束的优化问题。尽管具有多功能性,但非线性MPC的性能通常取决于动力学模型的准确性。在这项工作中,我们利用深度学习工具,即基于知识的神经普通微分方程(KNODE)和深层合奏,以提高该模型的预测准确性。特别是,我们学到了一个Knode模型的集合,我们将其称为Knode集合,以获得对真系统动力学的准确预测。然后将这个学到的模型集成到一种新颖的学习增强的非线性MPC框架中。我们提供了足够的条件,可以保证闭环系统的渐近稳定性,并表明这些条件可以在实践中实施。我们表明,knode集成提供了更准确的预测,并使用两个案例研究说明了所提出的非线性MPC框架的效率和闭环性能。关键字:非线性模型预测性控制,深度学习,神经差异方程,深层合奏