样本反卷积方法可估计大量组织样本中的细胞类型比例和基因表达,但它们的性能和生物学应用仍未被探索,特别是在人脑转录组数据中。在这里,使用来自大量组织 RNA 测序 (RNA-seq)、单细胞/细胞核 (sc/sn) RNA-seq 和免疫组织化学的样本匹配数据评估了九种反卷积方法。使用了来自 149 个成人死后大脑和 72 个类器官样本的每个细胞总共 1,130,767 个细胞核。结果显示,dtangle 在估计细胞比例方面表现最佳,而 bMIND 在估计样本细胞类型基因表达方面表现最佳。对于八种脑细胞类型,通过反卷积表达 (decon-eQTL) 鉴定了 25,273 个细胞类型 eQTL。结果表明,decon-eQTL 比单独的块组织或单细胞 eQTL 更能解释精神分裂症 GWAS 遗传性。还使用解卷积数据检查了与阿尔茨海默病、精神分裂症和大脑发育相关的差异基因表达。我们的研究结果在块组织和单细胞数据中得到复制,为解卷积数据在多种脑部疾病中的生物学应用提供了见解。
非小细胞肺癌经常在晚期诊断出来,许多患者仍接受经典化学疗法治疗。化学疗法的非选择性通常会导致严重的骨髓抑制。先前的研究表明,蛋白质编码突变无法完全解释骨髓压机的易感性。在这里,我们研究了增强子突变在骨髓抑制易感性中的可能作用。我们生成了三种用卡泊蛋白或吉西他滨处理的三种血管茎的转录组和启动子相互作用图(使用HICAP)。使用公开可用的增强剂数据集的优势,我们使用表观遗传学CRISPR技术验证了硅和活细胞中的HICAP。我们还开发了一种用于相互作用分析和检测差异相互作用基因的网络方法。差异相互作用分析提供了有关相关基因和骨髓抑制途径的其他信息,与散装水平的差异基因表达分析相比。此外,我们表明,与不同水平相关的骨髓抑制水平相关的变体,具有差异相互作用基因的增强子。中心,我们的工作代表了非编码突变的函数注释的整合转录组和基因调节数据集分析的一个突出例子。
摘要。背景/目的:结肠癌是最常见的癌症类型之一,也是癌症导致死亡的第二大原因。人们已经做出许多努力来研究结肠癌进展过程中的分子改变。然而,识别阶段特异性分子标记仍然是一个挑战。本研究的目的是开发一种新的计算方法来分析结肠癌各阶段差异基因表达和通路失调的变化,以揭示阶段特异性生物标记并加强药物再利用研究。材料和方法:结肠癌的转录组数据集用于识别(a)在四个结肠癌阶段中具有单调性倍数变化(MEG)的差异表达基因和(b)与参与差异表达基因(DEG)数量相关的单调富集(MEP)上升的扰动通路。通过计算机药物再利用流程,我们确定了调节 MEG 表达并靶向产生的 MEP 的药物。结果:我们的方法突出了 15 种 MEG 和影响其表达的 32 种候选再利用药物。我们还发现 51 种 MEP 根据其在结肠癌各阶段的 DEG 含量变化率分为两组。通过关注突出的再利用药物的目标 MEP,我们发现其中一种神经活性药物
自体血小板血浆(PRP)的自养生注入最近已被研究为卵巢储备降低的患者的一种潜在治疗方法。在当前的研究中,将从用PRP治疗的患者获得的积云细胞中的差异基因表达与对照组进行了比较。RNA测序库是由积云细胞构建的,并以p值≤0.05的错误发现率阈值进行差异表达分析,Log2折叠变化≥0.584。RNA测序的积云细胞的RNA测序表明,在比较了用PRP治疗的人(n = 5)与活出生(n = 5)的对照或失败植入的对照(n = 5)进行比较(n = 5)时,基因表达显着差异。同样,当所有用PRP处理的样品(导致活产或被捕的胚胎的样品(n = 10))与对照组的所有样品进行比较(那些导致活产,无怀孕或滞留的胚胎(n = 13)的样品(n = 13)),基因表达显着差异。通过多次比较(包括碳水化合物代谢,细胞死亡和生存,细胞生长和增殖以及细胞对细胞信号传导)始终受到PRP处理的影响,这些途径均与人类不育的原因有关。
Anuradha 博士于 2011 年以 DBT JRF/SRF 奖学金获得泰米尔纳德邦农业大学哥印拜陀分校生物技术博士学位,并于 2005 年以 JNU 奖学金获得泰米尔纳德邦农业大学生物技术硕士学位。博士研究期间的专业领域包括木薯再生和遗传转化协议的标准化。她还从泰米尔纳德邦的不同地区克隆和鉴定了印度和斯里兰卡木薯花叶病毒的复制酶基因,并将这些基因提交到 NCBI 核苷酸数据库中。博士研究期间的主要重点是通过 RNA 干扰获得木薯植物的病毒抗性。她构建了专门针对印度和斯里兰卡木薯花叶病毒复制酶基因的 RNAi 载体,并生成了抗木薯花叶病毒的假定转基因木薯系。加入 KAU 之前,她曾在纳格浦尔中央柑橘研究所担任农业研究科学家。在此期间,她通过 RAPD 标记和柑橘根茎抗病差异基因表达研究,从事柑橘种质鉴定工作。目前的研究兴趣领域是植物基因组编辑以改善性状、植物表观遗传基因调控以及基因克隆和表达。
2019 冠状病毒病 (COVID-19) 是一种严重的流行病,其特点是可能发生突变,并且可能导致疫苗效力低下。有证据表明,包括前列腺癌 (PC) 在内的恶性肿瘤患者可能极易感染 SARS-CoV- 2。目前尚无现有药物可以治愈 PC 和 COVID-19。木犀草素可能用于 COVID-19 治疗,并可作为一种有效的抗癌剂。我们目前的研究旨在发现木犀草素作为 PC 和 COVID-19 治疗的可能药物靶点和治疗机制。通过 RNA 测序确定了 PC 病例的差异基因表达。网络药理学和分子对接的应用旨在展示木犀草素的药物靶点和药理学机制。在这项研究中,我们发现了 PC 患者中前 20 个上调和下调的基因表达。富集数据表明木犀草素具有抗炎作用,其中改善代谢和增强免疫力是木犀草素治疗 PC 和 COVID-19 的主要功能和机制,其特点是与信号通路相关。据此计算确定了其他核心药物靶点,包括 MPO 和 FOS 基因。总之,根据生物信息学发现,木犀草素可能是治疗 PC 和 COVID-19 的一种有前途的药物,然后再进行临床验证和应用。
一种替代全长 CFTR cDNA 的“通用策略”可治疗 99% 以上的囊性纤维化 (pwCF) 患者,无论他们的具体突变如何。基于 Cas9 的基因编辑被用于在气道基底干细胞的 CFTR 基因座处插入 CFTR cDNA 和截短的 CD19 (tCD19) 富集标签。该策略将 CFTR 功能恢复到非 CF 水平。在这里,我们通过评估 CFTR cDNA 插入后的基因组和调控变化来研究这种方法的安全性。首先通过使用 CAST-seq 量化基因重排来评估安全性。在验证编辑和富集的气道细胞中恢复的 CFTR 功能后,使用 ATAC-seq 表征 CFTR 基因座开放染色质谱。使用 scRNA-seq 评估编辑细胞中的再生潜力和差异基因表达。 CAST-seq 发现 0.01% 的等位基因发生易位,主要发生在非致癌脱靶位点,1% 的等位基因发生大量插入缺失。分化气道上皮细胞的开放染色质谱除 CFTR cDNA 和 tCD19 盒对应的区域外,没有出现明显变化,表明基因调控没有可检测到的变化。编辑后的干细胞产生的气道细胞类型与对照相同,基因表达的改变最小。总体而言,通用策略显示出轻微的不良基因组变化。
降解液中的抗生素四环素 (TC) 及其降解产物 (TDPs) 存在严重的环境问题,例如损害人体健康和降低生态风险,因此需要进一步处理后才能排入水环境,此外,它们对微藻的环境影响尚不清楚。本研究采用水钠锰矿光催化和紫外照射降解 TC,随后利用微藻 Scenedesmus obliquus 进行生物净化。此外,还检测了微藻的光合活性和转录以评估 TC 和 TDPs 的毒性。结果表明,光催化降解 30 min 后效率达到 92.7%,检测到 11 种中间产物。微藻在 8 d 后就达到了较高的 TC 去除率 (99.7%)。降解的TC溶液(D)处理下的S. obliquus生物量显著低于纯TC(T)(p < 0.05),且T处理下的S. obliquus恢复力优于D处理。不同处理的转录组分析显示,差异基因表达主要涉及光合作用、核糖体、翻译和肽代谢过程。光合作用相关基因的上调和叶绿体基因的差异表达可能是S. obliquus在暴露于TC和TDPs时获得高光合效率和生长恢复的重要原因。本研究为采用催化降解和微藻净化相结合的方式去除TC提供了参考,也有助于认识TDPs在自然水环境中的环境风险。
尽管青霉霉菌对农业,工业和生物医学系统产生重大影响,但在许多微生物中,青霉物种的生态作用并没有很好地表征。在这里,我们利用了从奶酪皮中分离出的35种青霉菌株的集合来广泛研究与奶酪相关的青霉物种中次生代谢的基因组潜力,青霉对细菌群落组装的影响以及青霉杆菌相互作用的机制。使用抗石,我们确定了1558个Biosyn thetic基因簇,其中406个被映射到已知途径,包括几种霉菌毒素和抗微生物化合物。通过测量细菌丰度和真菌mRNA表达,当用奶酪皮细菌群落培养代表性的青霉菌株时,我们观察到不同的青霉菌株的不同影响,从对细菌生长的强烈抑制剂到对细菌生长或社区成分没有影响的细菌抑制剂。通过差异mRNA表达分析,青霉素菌株恶魔响应细菌群落而导致有限的差异基因表达。我们确定了八个测试的青霉素菌株之间的一些共同反应,主要是养分代谢途径的上调,但我们并未确定对多品种社区增长的保守真菌反应。这些结果串联表明,与奶酪相关的青霉物种之间的差异很大,它们能够塑造细菌群落发展并突出该标志性属内重要的生态多样性。
这项研究研究了使用基于液滴的单细胞RNA测序(SCRNA-SEQ)对脂肪组织衍生的间质 - 干细胞(AT-MSC)如何应对软骨诱导的反应。我们分析了来自对照细胞和细胞的37,219个高质量的转录本,诱导了1周(1W)和2周(2W)。四个不同的细胞簇(0-3),无法通过批量分析,有变化的比例来检测。群集1在对照和1W细胞中占主导地位,而簇(3、2和0)分别在对照,1W和2W细胞中占主导地位。此外,出现的簇中的杂素软骨标志物表达。基因本体论(GO)对关键生物逻辑过程中销售的群集特异性变化(BP)的差异基因的富集分析:(1)群集1表现出与核糖体生物发生和转化性控制有关的GO-BP术语的上调,对维持干细胞和家居特性和家用稳定的术语至关重要。 (2)此外,群集1显示了与线粒体氧化代谢相关的GO-BP项上调; (3)群集3显示了与细胞增殖有关的GO-BP项的上调; (4)簇0和2显示了与胶原原纤维组织和超分子纤维组织相关的GO-BP术语的类似上调。但是,只有群集0显示出与核糖体产生有关的GO-BP项显着下降,这意味着核糖体调节与AT-MSC的分化阶段之间存在潜在的相关性。总的来说,我们的发现突出了异质细胞簇,在增殖和分化之间具有不同的平衡,