摘要:视网膜色素变性是一种遗传性视网膜营养不良症,由于视杆细胞逐渐退化,视锥细胞随后非细胞自主性死亡,最终导致失明。视紫红质是本病中最常见的突变基因。本文利用 CRISPR/Cas9 技术,在两种非洲爪蟾(非洲爪蟾和热带爪蟾)中开发了基于视紫红质基因编辑的视网膜色素变性模型。在这两种蟾蜍中,视紫红质功能的丧失都会导致大量视杆细胞变性,其特征是外节逐渐缩短,偶尔会出现细胞死亡,随后视锥细胞形态恶化。尽管这些退化环境看似相似,但我们发现 Müller 神经胶质细胞在非洲爪蟾和热带爪蟾中的行为不同。虽然非洲爪蟾中相当一部分穆勒细胞重新进入细胞周期,但它们在热带爪蟾中的增殖仍然极其有限。因此,这项研究揭示了近亲物种对视网膜损伤的不同反应。这些模型应该有助于我们在未来加深对进化过程中塑造再生的机制的理解,而脊椎动物之间存在巨大差异。
➢ Sharing good practice and achievements through the existing online improvement repositories as well as newsletters and during webinars ➢ Publishing the improvement workbooks for each workstream ➢ Developing improvement support videos, podcasts and social media messaging ➢ Exploring ways to embed FFFAP in clinical staff training programmes, for example through deaneries and AHP training programmes ➢ Support for addressing health inequalities and inequity of care provisions through annual报告➢支持社区通过常规网络研讨会提供医疗保健改进,包括访问专业知识,例如通过
图 1. 实验设计。A:试验设计。听觉和视觉刺激同时呈现。听觉间隙检测任务:参与者必须在白噪声 7 秒内检测到间隙(间隙可能发生在 4-6 秒的时间窗口内)。对于“困难”条件,间隙持续时间单独滴定至 75% 正确。对于“简单”条件,间隙持续时间加倍。多物体跟踪任务:参与者观看 16 个移动点,并被要求在移动点场景中跟随最初提示的(红色)点。7 秒后,点停止移动,三个点被标记为绿色,并标为 1、2 和 3。参与者必须决定三个点中的哪一个是提示点。参与者必须跟随一个(简单)或五个(困难)点。分析集中在 3-4 秒的时间窗口(间隙前窗口;此外,由于其反应缓慢,还关注 5-6 秒的瞳孔大小窗口)。 B:单任务会话(左)和双任务会话(右)的设计。在单任务会话中,参与者分别执行听觉和视觉任务(但始终呈现视听刺激)。在双任务条件下,参与者同时执行这两项任务。C:假设示意图。如果生理测量指标独立于模态来指示认知需求,则难度增加的影响在各种模态之间应该是相同的(左图)。或者,难度增加的影响可能在不同的感官模态之间有所不同(右图)。
破解成功衰老的秘密取决于对整个成年期认知和行为变化模式及其生物学基础的理解。这一任务与理解大脑的运作方式密不可分,大脑是行为的物理基础。在这篇综述中,我们总结了有关与年龄相关的大脑结构差异和变化的现有文献,包括尸检和非侵入性磁共振成像 (MRI) 研究。在后者中,我们调查了体积测定、扩散张量成像和白质高信号 (WMH) 评估的证据。此外,我们回顾了通过磁共振波谱 (MRS) 测量衰老代谢标志物来阐明与年龄相关的结构变化机制的尝试。我们讨论了大脑衰老模式与认知衰退和稳定性模式之间的假定联系。然后,我们列举了一些活动和条件(高血压、激素缺乏、有氧健身)的例子,这些活动和条件可能会以积极或消极的方式影响正常衰老过程。最后,我们推测了几种差异性大脑衰老机制,包括神经递质系统、压力和皮质类固醇、微血管变化、钙稳态和脱髓鞘。r 2006 由 Elsevier Ltd. 出版。