材料与技术介绍,结构分析工具:X射线衍射:相位识别、索引和晶格参数确定、使用各种模型进行分析线轮廓拟合、中子衍射、反射高能电子衍射和低能电子衍射;显微镜技术:光学显微镜、透射电子显微镜(TEM)、能量色散X射线微分析(EDS)、扫描电子显微镜(SEM)、卢瑟福背散射光谱(RBS)、原子力显微镜(AFM)和扫描探针显微镜(SPM);热分析技术:差热分析(DTA)、差示扫描量热法(DSC)、热重分析(TGA);电气表征技术:电阻率、霍尔效应、磁阻;
摘要:2,4,6三硝基甲苯(俗称TNT)是军事和商业用途最安全、应用最广泛的高能材料之一。第二次世界大战期间,大量TNT被用于填充用于对付敌人的各种常规弹药。结果,大量无用弹药被闲置,要么通过常规处置技术处理,例如露天燃烧、露天引爆、倾倒到海中、焚烧、生物降解,要么未经适当处置就埋入地下。据报道,在处置这些无用和不需要的弹药时发生了多起事故。为了避免这种有害情况,过去全球都在努力重新利用不需要的高能材料,但在这方面仍需要付出更多努力。本研究旨在将倾析的TNT安全转化为可用于采矿、采石、水下爆破活动的商业级高能材料。为此,我们利用各种材料/成分与倾析的 TNT 合成新形成的熔融铸造商业级高能材料。我们通过热重/差热分析 (TG/DTA)、扫描电子显微镜 (SEM) 和 X 射线衍射 (XRD) 技术进一步表征了该特定样品,以识别各个方面。结果表明,新合成的样品具有清晰、致密和
摘要 氨基酸及其复合物是一种有机或半有机材料,由于其易于用于光学存储设备而受到广泛关注。DL-丙氨酸是稀有的在非中心对称基团中结晶的氨基酸之一。本文展示了 DL-丙氨酸重铬酸钾 (DAPC) 单晶如何表现出足够的生长。通过单晶 X 射线衍射和粉末 X 射线衍射分析了 DAPC 晶体。利用热重分析/差热分析 (TGA/DTA) 和差示扫描量热法,本文还研究了 DAPC 晶体的熔点、热稳定性、分解点和其他热参数。结果表明,DAPC 的分解点为 397 °C,与 TG/DTA 的分解点相似。还测量了介电常数、耗散和交流电导率,并分析了结果以了解电流操作模型的各种特征。DAPC 单晶的活化能为 0.074 eV。关键词:DAPC,电介质,单晶,热,XRD 引言 有机材料组合在光学生物稳定性和谐波产生 (SHG) 中起着重要作用 [1]。近年来,一些研究人员对其光学特性 (非线性光学) [2] 进行了广泛的研究。同时,氨基酸链在稳定蛋白质结构和催化酶促反应方面起着重要作用,已经发表了许多关于氨基酸(如 L-丙氨酸)的研究文章 [3]。新材料不断被研究,因此,晶体产品的数量多年来不断增加。因此,单晶的发展确保了科学材料的进一步发展。 晶体具有美丽的颜色、闪耀着光芒的光滑表面、清晰的清晰度、具有锋利边缘的多种形状以及透明度(对于某些类型)[4]。水晶传统上被用作装饰品,唤醒了第一批人的审美知识。目前,水晶产品的用途已经从装饰领域扩展到各个科学领域的许多其他实际应用。同时,晶体生长是信息科学与工程的一个重要方面,因为它
摘要:本文使用代表性样品研究了位于西班牙安达卢西亚西部的原始高岭土矿床。表征方法包括 X 射线衍射 (XRD)、X 射线荧光 (XRF)、筛分和沉降粒度分析以及热分析。确定了陶瓷性能。在一些测定中,我们使用了来自 Burela(西班牙卢戈)的商用高岭土样品,用于陶瓷工业,以便进行比较。高岭土矿床是由富含长石的岩石蚀变形成的。这种原始高岭土被用作当地陶瓷和耐火材料制造的添加剂。然而,之前没有关于其特性和烧成性能的研究。因此,本研究的意义在于对这一主题进行科学研究并评估其应用可能性。用水冲洗原始高岭土,以增加所得材料的高岭石含量,从而对岩石进行富集。结果表明,XRD 测定原料中的高岭石含量为 20 wt%,其中粒径小于 63 µ m 的颗粒占 ~23 wt%。粒径小于 63 µ m 部分的高岭石含量为 50 wt %。因此,通过湿法分离可以提高该原料高岭土的高岭石含量。但该高岭土被视为废高岭土,XRD 鉴定为微斜长石、白云母和石英。通过热膨胀法 (TD)、差热分析 (DTA) 和热重法 (TG) 进行热分析,可以观察到高岭石的热分解、石英相变和烧结效应。将该原料高岭土的压制样品、水洗获得的粒径小于 63 µ m 的部分以及用锤磨机研磨的原料高岭土在 1000-1500 ◦ C 范围内的几个温度下烧制 2 小时。测定并比较了所有这些样品的陶瓷性能。结果表明,这些样品在烧结过程中呈现渐进的线性收缩,小于 63 µ m 的部分的最大值约为 9%。总体而言,烧成样品的吸水率从 1050 ◦ C 时的约 18-20% 下降到 1300 ◦ C 烧成后的几乎为零,随后实验值有所上升。在 1350 ◦ C 烧成 2 小时后,开孔气孔率几乎为零,并且在研磨的生高岭土样品中观察到的体积密度达到最大值 2.40 g/cm 3。对烧成样品的 XRD 检查表明,它们由高岭石热分解产生的莫来石和原始样品中的石英组成,除玻璃相外,它们还是主要晶相。在 1300–1350 ◦C 下烧结 2 小时,可获得完全致密或玻璃化的材料。在本研究的第二步中,研究了之前研究的有希望的应用,即通过向该高岭土样品中加入氧化铝(α-氧化铝)来增加莫来石的含量。混合物的烧结,在湿法加工条件下,用这种高岭土和 α-氧化铝制备的莫来石,通过在高于 1500 ◦ C 的温度下反应烧结 2 小时,使莫来石的相对比例增加。因此,可以使用这种高岭土制备莫来石耐火材料。这种高铝耐火材料的加工有利于预先进行尺寸分离,从而增加高岭石含量,或者更好地对原料高岭土进行研磨处理。