寡核苷酸耦合的dynabeads™磁珠用于从生物样品中特异性捕获核酸靶标(图3)。在等离子体(400 µL最终体积)中峰于M13噬菌体的已知量(1.4x10^5 pfu)后,样品被液化,并通过杂交在寡聚偶联的珠子偶联物上捕获的释放的核酸靶标。然后从珠子中洗脱核酸靶标,并通过qPCR定量。当裂解/结合步骤仅在室温下长2分钟时,回收率约为25%,但是当裂解/结合时间增加到10分钟并在55ºC处发生时,恢复速率达到70%,表明根据捕获效率要求,测定条件可以调节(图4)。
用于消息加密,仅受到已知量子计算攻击的部分影响。将当前加密密钥的长度加倍会减轻量子计算机的攻击。不对称的加密(例如RSA)是PKC的基础,并且依赖于困难的数学问题(分解质数是最常见的)。非对称加密图被广泛用于数字步骤中,例如签名和密钥交换,以确保对使用Internet至关重要的通信和网络。这些包括电子邮件交换,虚拟专用网络(VPN),安全网页连接,大多数形式的电子商务以及数字供应链等。对称和不对称的加密 - 策略通常在一起使用:不对称的加密式来执行关键的建立和一致,以及对https协议中的消息加密的对称性加密,最广泛用于Web浏览。
摘要 量子引力领域的最新提议表明,如果中介本身是非经典的,那么未知系统可以介导两个已知量子系统之间的纠缠。这种方法可能适用于大脑,人们对意识和认知中的量子操作的猜测由来已久。最有可能干扰任何大脑功能的体水的质子自旋可以充当已知的量子系统。如果存在未知的中介,那么基于多重量子相干性 (MQC) 的 NMR 方法可以充当纠缠见证人。然而,人们怀疑当今的 NMR 信号是否通常包含量子关联,特别是在大脑环境中。在这里,我们使用了基于零量子相干性 (ZQC) 的见证协议,其中我们最小化经典信号以绕过 NMR 对量子关联的检测限。对于短暂的重复周期,我们在大脑的大部分区域发现了诱发信号,其时间外观类似于心跳诱发电位 (HEP)。我们发现这些信号与任何经典 NMR 对比都没有相关性。与 HEP 类似,诱发信号取决于意识。意识相关或电生理信号在 NMR 中尚不清楚。值得注意的是,这些信号只有在磁化的局部特性降低时才会出现。我们的发现表明,我们可能已经目睹了由意识相关的大脑功能介导的纠缠。这些大脑功能必须以非经典方式运行,这意味着意识是非经典的。
摘要 R 环杂交和电子显微镜已用于测定克隆基因的细胞 RNA 浓度。在质粒 DNA 序列过量的情况下,所有互补 RNA 都被驱动到可通过电子显微镜分析的 R 环结构中。为测定特定 poly(A)+ RNA 的浓度,将质粒 DNA 每 2000-5000 个碱基对与三氧沙林和紫外线交联一次,以 DNA 序列过量的方式与各种已知量的总 poly(A)+ RNA 杂交,并通过用乙二醛处理来稳定 R 环。如有必要,可使用 Sepharose 2B 色谱法去除多余的未杂交 RNA,从而能够可视化较少的转录本。重建实验表明,通过电子显微镜测定含有特定 RNA 环的质粒 DNA 分子的比例可以给出总 poly(A)+ RNA 群体中特定 RNA 重量比例或浓度的准确值。这些方法还用于测定 TRT3 上与序列互补的五种 RNA 物种的浓度,TRT3 是一种重组 DNA 质粒,含有酵母组蛋白 2A 和 2B 基因以及另外三种非组蛋白基因。所描述的方法允许人们可视化丰富和非丰富转录本的 R 环结构,并通过确定含有 R 环的 DNA 分数来估计这些 RNA 物种的浓度。
摘要。遗传性血管性水肿的症状可能在儿童出生后的头几年出现。发病可能对儿童较窄的气道构成特别威胁。早期诊断最有价值,因为有效的 C1 抑制剂 (C1 INH) 浓缩物是可用的。我们通过使用来自 80 名正常新生儿的未污染脐带血(通过穿刺新分娩胎盘中的血管收集)来提供 C1 INH 抗原和功能测定的参考区域。我们以同样的方式检查了患有 I 型遗传性血管性水肿的母亲的两个足月婴儿(1 和 2)。通过径向免疫扩散测定 C1 INH 抗原的浓度。C1 INH 功能测定基于添加已知量的 Cls,其酶促分裂发色底物。该测试是在动力学微量滴定板测定中在甲胺和肝素存在下进行的。两次测定均使用柠檬酸盐血浆。在 80 个脐带血样本(2.5-97.5 百分位数)中获得的数据为 Cl INH 抗原 0.1 1-0.22 g/L(成人,0.15-0.33 g/L),Cl INH 功能 47.2-85.9%(成人百分比)。在脐带血中,婴儿 I 的抗原值为 0.12 g/L(7.5 百分位数),C1 INH 功能为 61.8%(42 百分位数)。婴儿 2 的脐带血相应值小于 0.05 g/L(0.106 g/L < 2.5 百分位数)和 34.3%(12.9% < 2.5 百分位数)。婴儿 2 的 C4 值明显低于婴儿 1,但 C4 活化产物高得多。在 4 个月时,婴儿 1 的抗原 C1 INH 值为 0.24 g/L。 6 个月大时,婴儿 2 的抗原值为 0.13 g/L,对于这个年龄来说相当低。19 个月大时,这个孩子出现腹痛、腹胀和大量水样腹泻。给予 C1 INH 浓缩液 (500 U),4 周的症状在 6 小时内消退。这项研究支持了以下假设:可以通过评估 C1 INH 抗原和功能在分娩时诊断遗传性血管性水肿。(《儿科研究》35:184-187,1994 年)
摘要:提出了一种方法和必要的分析设备,用于从土壤和水性培养基中的硫酸盐离子进行质量定量测定,并提出了水性培养基中的硫酸盐离子,其中包括以下事实,即将已知量的2-水性氯化氯化物含有氯化氢添加到分析样品的等分样品中。所得的不溶性硫酸钡化合物降低了氯化钡的初始浓度。在特殊设计的火焰分光光度法分析仪上确定溶液中剩余的氯化钡量。这使您可以计算与钡相关的硫酸盐离子的量,该硫酸盐是由设备程序自动执行的。通过所提出的水样中提出的方法可靠确定的硫酸盐离子浓度范围为10至100 mg/dm 3。可靠确定的从0.2至2.4 c(1/2SO4)mol/dm 3(从10到115 mg/dm 3)的土壤提取物中硫酸盐离子的浓度范围。必须用蒸馏水多次将较高浓度的硫酸盐离子稀释。该方法使确定水土壤提取物,淡水储层和河流,地下来源,自来水,沉积物,被工业企业的硫酸排放污染的沉积物是可能的。该方法非常简单,准确且富有成效。该方法由国家乌拉尔研究所(MVI-66373620-007-2018)认证,并由联邦技术法规和计量署(RosStandart)批准,作为No.253.0080/ra。RU.311866/2019。 专利号 2681855在俄罗斯联邦知识产权服务公司的优先级,日期为2017年9月15日的优先级,用于确定硫酸盐离子形式的硫酸盐在土壤中的硫酸盐离子的形式,并从土壤中及其所需的设备确定。 在这些物体中确定硫酸盐离子的详细方法在书中发表在《开放媒体:“使用流动分析技术对土壤,植物和水生环境的农业化学和化学参数的确定”,由俄罗斯科学院学院院士编辑。RU.311866/2019。专利号2681855在俄罗斯联邦知识产权服务公司的优先级,日期为2017年9月15日的优先级,用于确定硫酸盐离子形式的硫酸盐在土壤中的硫酸盐离子的形式,并从土壤中及其所需的设备确定。在这些物体中确定硫酸盐离子的详细方法在书中发表在《开放媒体:“使用流动分析技术对土壤,植物和水生环境的农业化学和化学参数的确定”,由俄罗斯科学院学院院士编辑。