2023 年 7 月,伯克利通过了一项政策,为该市历史红线区现有居民及其后代提供优先权。与该地区有联系的家庭在租赁新的市政府资助或监管的可负担住房时享有优先权。由于研究区域的大部分位于伯克利的历史红线区内,许多前居民和现任居民可能有资格享受这一优先权。
公平优先社区和红线社区。资料来源:Robert K. Nelson 和 Edward L Ayers,《红线绘制》,2023 年。MTC、EPC 数据,2021 年。
收稿日期: 2024–05–13 ; 修回日期: 2024–06–28 ; 录用日期: 2024–07–05 ; 网络首发时间: 2024–07–19 15:22:18 网络首发地址: https://doi.org/10.13801/j.cnki.fhclxb.20240718.003 基金项目: 国家自然科学基金 (51902125) ; 吉林市科技发展计划资助项目 (20210103092) ; 第七批吉林省青年科技人才托举工程 (QT202316) National Natural Science Foundation of China (51902125); Science and Technology Development Plan of Jilin City (20210103092); Seventh Batch of Jilin Province Young Science and Technology Talents Promotion Project (QT202316) 通信作者: 陈杰 , 博士 , 副教授 , 硕士生导师 , 研究方向为碳纤维复合材料的开发与应用 E-mail: jiechendr@163.com
麻省理工学院、麻省理工学院和哈佛大学拉根研究所 — 美国马萨诸塞州波士顿 博士后研究员,Schmidt 实验室 2024 年 9 月 ++ → 研究甲型流感免疫和进化(Aaron Schmidt 教授) 麻省理工学院生物工程系(BE)—美国马萨诸塞州剑桥 研究生助理,Niles 实验室 2018 年 9 月 — 2024 年 9 月 → 创建了病原体群体遗传学和进化的流行病学建模框架,并将其应用于跨适应度谷的病原体进化研究(自我主导的合作) → 构建了用于恶性疟原虫转录控制、功能基因组学、系统生物学和药物开发的分子和计算工具(Jacquin Niles 教授) 哈佛医学院系统生物学系 — 美国马萨诸塞州波士顿 访问本科研究员,Paulsson 实验室 2018 年 2 月 — 7 月 → 应用微流体和显微镜研究细菌生理学和持久性(Johan 教授Paulsson) Eligo Bioscience,SA — 法国巴黎 合成生物学研究实习生,Eligo Bioscience 2017 年 8 月 — 2018 年 1 月 → 筛选和设计针对细菌菌株的合成噬菌体(指导老师:Jesús Fernández R. 博士) 亚利桑那州立大学数学与理论生物学研究所 — 美国亚利桑那州坦佩 访问本科研究员,MTBI(现为 QRLSSP) 2017 年 6 月 — 7 月 → 创建生物膜中细菌对抗生素耐药性的 3D、空间明确的计算模型 麻省理工学院生物工程系 — 美国马萨诸塞州剑桥 访问本科研究员,Niles Lab 2016 年 5 月 — 8 月 → 组装 CRISPR-Cas9 构建体用于疟原虫的基因编辑(Prof. Jacquin Niles) 哥伦比亚波哥大 Uniandes 生物科学系 本科研究员,CIMIC 和 BCEM 实验室 2015 年 5 月 - 2017 年 8 月 → 设计并通过实验测试了噬菌体-宿主动力学的 ODE 模型(Martha Vives 教授)
神经退行性疾病是由细胞和神经元在大脑和周围神经系统的功能丧失引起的疾病,包括阿尔茨海默氏病(AD),帕金森氏病(PD),杏仁核外侧硬化症(ALS)以及额叶摄取症状(FTD)和其他。由于对神经退行性疾病的病理机制不完全理解,目前可用的治疗方法只能减轻某些相关症状,并且仍然缺乏有效的治疗方法。大多数神经退行性疾病具有常见的细胞和分子机制,这是淀粉样蛋白样蛋白聚集体和包含体的形成。神经退行性疾病中蛋白质聚集体的广泛存在表明它们在疾病发生和进展中的特殊作用。长期以来,成核和聚集被认为是蛋白质骨料形成的唯一途径。然而,最近的研究表明,这些蛋白可能会经历另一个聚集过程,即液相分离介导的聚集。相分离是生物分子通过弱的多价相互作用形成动态凝结的过程。在这些冷凝物中,生物分子浓度高度富集,并且仍然与外部环境保持动态交换。相分离是由弱的多价相互作用(例如静电,π相关,氢键和疏水相互作用)介导的。对于特定分子,它们的相分离行为可能主要由一个或某些相互作用介导。但是,生活系统中的相互作用更为复杂。有很多工作着眼于在各种系统中做出重大贡献的相互作用类型。这些发现可能有助于我们进一步了解序列上的小扰动者如何改变相位分离行为,以及为什么自然发生的突变会产生重要的生理和生物物理效应。在活生物体中进行相分离的蛋白质通常包含本质上无序的区域(IDR)或本质上无序的蛋白质(IDP)。淀粉样蛋白通常具有这种特征。这样的IDR/ IDP没有稳定的折叠结构,并且以动态形式存在于解决方案中。由于缺乏清晰的三维结构,IDR/IDP具有更高的动力和灵活性,因此为分子间接触和相互作用提供了更多机会。近年来,研究人员表明,许多神经退行性疾病与淀粉样淀粉样蛋白样蛋白可以进行相分离,这表明淀粉样蛋白样蛋白和病理学的相行为之间存在潜在的关联。在这里,我们总结了有关几种神经退行性疾病相关的淀粉样蛋白的相分离和聚集的最新研究,包括Aβ,TAU,α-突触核蛋白,TDP-43和SOD1。它们是与神经退行性疾病相关的典型病理蛋白,并且已被证明与过去几十年中相关疾病具有很高的相关性。他们的共同特征是患者中发现的淀粉样蛋白聚集体。最近的研究表明,它们也具有相分离的特性,这可能与病理聚集体的形成相关。因此,我们总结了这些淀粉样蛋白的相位行为的最新研究,这可能带来调节相关病理过程和治疗疾病的潜在机会。我们希望本文可以帮助加深对神经退行性疾病中蛋白质的病理机制的理解,并激发疾病治疗的新思想。
专业知识、灵敏度和绝对精度对于保持高质量标准至关重要。无论是手工去除钛部件的毛刺、钢部件的表面处理、无损部件测试还是铝的熔焊,都无关紧要。凭借高技能的工人和各种尖端生产技术和测试方法,利勃海尔航空能够确保其开发、制造和维护的所有航空部件都能可靠且准确地按要求运行。
我们每迈出一步,就加强了为客户提供创新、有竞争力的解决方案的能力,从而促进了公司的长期发展。利勃海尔航空成功的关键因素是我们所有团队的卓越承诺、广泛的专业知识和卓越的专业精神。2013 年,300 名新员工加入了我们,使我们的总人数达到约 4,900 人。我们热烈感谢他们所有人的出色表现。在这本杂志中,您将能够阅读有关我们员工的更多信息,并了解我们最近的合同和未来最激动人心的项目。
您可能已经选择了这本书,因为您对量子计算(QC)和量子信息科学(QIS)所听到的内容很感兴趣或困惑,并且您想了解更多信息。为什么要继续阅读?本书有什么不同?我们试图将这本书定位在旨在具有正式量子力学和高级数学专业知识的专业科学家和工程师的高科技书籍之间,以及那些几乎没有数学的通用听众书籍,尽管有些人非常聪明,可以找到数学的图形替代品。我们的演讲针对的是读者,他们希望对量子计算进行介绍,从而使他们具有强烈的基本理解,并准备与“ expts”聪明地交谈。如果读者如此倾向,他们将准备好研究本书后挖掘该领域的技术方面。典型的本科生(或高级高中生)应该可以使用该材料,其数学背景包括中学代数和与罪恶和余弦的相识。不需要物理背景,但是如果您很幸运地在高中或大学中拥有合理的介绍性物理课程,那么您了解到的内容将为量子计算提供更广泛的观点。高中数学和物理教师以及不是量子信息科学和量子计算专家的大学和大学教职员工也应享受和受益于阅读本书。以下内容将我们的演讲与其他演讲区分开: