作为抗体-药物偶联物的新替代品,我们生成了“配体靶向”肽-药物偶联物 (PDC),它利用受体介导的内吞作用进行靶向细胞内药物递送。PDC 与细胞外配体形成复合物,然后与细胞表面的受体结合,通过内吞途径刺激细胞内摄取。螺旋-环-螺旋 (HLH) 肽被设计为药物载体,并随机化以得到构象受限的肽库。噬菌体展示库针对血管内皮生长因子 (VEGF) 进行筛选,以产生结合肽 M49,其表现出强结合亲和力 (KD = 0.87 nM)。共聚焦荧光显微镜显示肽M49与VEGF及其受体形成三元复合物,然后通过VEGF受体介导的内吞作用被内化到人脐静脉内皮细胞(HUVEC)中。骨架环化的肽M49K与药物单甲基奥瑞他汀E结合,得到PDC,其抑制VEGF诱导的HUVEC增殖。HLH肽及其PDC具有作为靶向分子治疗新方式的巨大潜力。
SARS-CoV-2 可通过内吞吸收感染细胞,该过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种治疗病毒感染的方法结果好坏参半,一些研究详细介绍了羟氯喹的口服方案,并伴有明显的脱靶毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加药物在靶点的浓度。在这里,我们描述了一种溶酶体靶向的、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒内吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100 – 150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2 WA1 及其 Omicron 变体。细胞器靶向递送是抑制病毒感染的有效方法。
胞质和各种细胞质内包含(糖原颗粒和脂质液滴)的细胞质细胞器组成。平滑的内质网:结构,脂质代谢中的作用,解毒过程,糖原分解和钙的积累。颗粒状内质网的超微结构组织和功能。翻译过程中的主要步骤以及针对细胞质的蛋白质的合成与分泌,膜或溶酶体蛋白的合成之间的差异。蛋白质的翻译后修饰:分子伴侣的糖基化,羟基化和作用。COP蛋白涂层的转运囊泡。囊泡运输和融合过程的特异性:V-SNARE和T-SNARE蛋白。Golgi复合物:超微结构,生物合成过程和内质网中合成的分子的排序。构成和调节的细胞分泌:调节机制。内吞作用。通过山洞对可溶性分子的内在化:可吞作用,转胞胞菌病,小窝蛋白与信号分子的相互作用。受体介导的内吞作用:粘蛋白涂层的囊泡。内体和特定配体的不同分类途径。溶酶体:生物发生,形态,水解酶。吞噬作用和自噬。过氧化物酶体:细胞质蛋白降解的结构和功能机制:泛素 - 蛋白酶体系统和杂物。线粒体:形态,分布和复制。线粒体基因组。细胞骨架。线粒体酶复合物的定位和功能:克雷布斯循环的主要方面和氧化磷酸化。线粒体在钙稳态,凋亡和类固醇激素合成中的作用。微管,微丝和中间细丝:分子组织,细胞中的分布和不同细胞类型。细胞骨架在特定过程中的功能,例如细胞运动,吞噬作用,内吞作用,胞吐作用,囊泡运动。与微管(驱动蛋白和动力蛋白)和微丝(结合肌动蛋白)相关的蛋白质。中心体。膜细胞骨架。振动睫毛:结构和功能。主要边缘。
超出血糖控制,SGLT2抑制剂(SGLT2IS)对心脏功能具有保护作用。肾脏重新保护涉及抑制NHE3,导致ATP依赖性管状工作量减少和线粒体氧的消耗。NHE3活性对于调节内体pH值也很重要,但是SGLT2I对内吞作用的影响尚不清楚。我们使用了近端小管(PT)细胞的高度分化的细胞培养模型来确定SGLT2I对nephron节段中依赖性的流体转运和内吞摄取的直接影响。引人注目的是,canagli lof ozin,但没有empagli lozin降低了跨细胞单层的流体转运,并极大地抑制了白蛋白的内吞摄取。这些作用与葡萄糖无关,并以临床相关的药物浓度发生。canagli-lof ozin急性抑制表面NHE3活性,与直接作用一致,但不会影响内体pH或NHE3磷酸化。此外,Canagli lozin迅速,有选择地抑制线粒体复合物I活性。通过二甲双胍抑制线粒体复合物I,概括了Canagli ozin对内吞作用和流体转运的影响,而向下流效应子AMPK和MTOR的调节却没有。小鼠在24小时内将单剂量的canagli lof ozin排出了两倍的尿液,尽管摄入相似,但与empagli lozin处理的小鼠相比,在24小时内排出了两倍。我们得出的结论是,Canagli -flozin通过直接抑制NHE3和AMPK/MTOR轴上游上游的直接抑制NHE3和线粒体功能,选择性地抑制了PT细胞中依赖性的流体转运和白蛋白的摄取。Canagli丙嗪蛋白的这些其他靶标显着促进了降低的PtNaÞ-依赖性的流体转运。
1神经科学系,南卡罗来纳州医科大学2当前地址:北卡罗来纳州大学图书馆3当前地址:路易斯安那州立大学兽医学院比较生物医学科学系,路易斯安那州巴吞鲁日兽医学院,路易斯安那州巴吞鲁日,路易斯安那州巴吞鲁日4期间4当前地址:当前地址cowanc@musc.edu南卡罗来纳州神经科学系Ashley Avenue 173 Ashley Avenue,BSB 403,MSC 510,Charleston,Charleston,SC 29425,美国; PH:(843)792-2935简短的标题:HDAC5限制与上下文相关的可卡因寻求六个关键字:药物使用障碍,前比皮层,HDAC5,HDAC5,药物型上下文,药物寻求电路,表观遗传,表观遗传学,复发性,E/I平衡数据可用性数据可用:可用的数据可用要求提供授权的数据。资金声明:这项研究得到了F32 DA047845(S.M.B),T32 DA007288(to S.M.B.和J.L.H),K12 HD055885(to R.D.P.),K01 DA046513(到E.M.A.),P20 GM148302(to S.B.和C.W.C.)和R01 DA032708和P50 DA046373(to C.W.C.)。道德批准声明:所有程序均由南卡罗来纳州医科大学机构动物护理和使用委员会批准。实验和分析。利益冲突声明:所有作者都没有报告生物医学财务利益或潜在的
1 路易斯安那州立大学物理与天文系赫恩理论物理研究所,路易斯安那州巴吞鲁日 70803,美国 2 布鲁塞尔自由大学布鲁塞尔理工学院量子信息与通信中心 (QuIC),比利时 B-1050 3 ICFO-科学照片研究所,巴塞罗那科学技术研究所,Av.卡尔弗里德里希高斯 3,08860 卡斯特尔德费尔斯(巴塞罗那),西班牙。 4 代尔夫特理工大学 QuTech,Lorentzweg 1, 2628 CJ 代尔夫特,荷兰 5 NTT 基础研究实验室和 NTT 理论量子物理研究中心,NTT 公司,3-1 Morinosato-Wakamiya,厚木,神奈川县 243-0198,日本 6 路易斯安那州立大学计算与技术中心,路易斯安那州巴吞鲁日 803,美国(日期:2020 年 1 月 28 日)
Unitech培训学院在路易斯安那州巴吞鲁日设有一个分支校园。校园位于4354 Sherwood Forest Boulevard,Suite D295,Baton Rouge,LA 70816,(225)262-4411。Baton Rouge的Unitech培训学院目前提供以下计划:牙科辅助,EKG/Phlebotomy技术人员,按摩疗法,医疗助理和药房技术员。巴吞鲁日校园位于建筑物的第二个故事中,其中大约有10,400平方英尺的地板空间。整个建筑物都被集中加热,并为冬季和夏季的舒适度提供了空调。校园还配备了几个教室,一个学生休息室,测试室,实验室,几个办公室和一个接待区。为学生提供培训的现代,最新设备。
小鼠和人类皮质突触的超微结构膜动力学 Chelsy R. Eddings 1、Minghua Fan 2、Yuuta Imoto 1#、Kie Itoh 1#、Xiomara McDonald 1、Jens Eilers 3、William S. Anderson 4、Paul F. Worley 2,5、Kristina Lippmann 3*、David W. Nauen 5,6**、Shigeki Watanabe 1,2,7*** 1 约翰霍普金斯大学细胞生物学系,美国马里兰州巴尔的摩 21205。 2 Solomon H. Snyder 约翰霍普金斯大学神经科学系,美国马里兰州巴尔的摩 21205。 3 莱比锡大学医学院 Carl-Ludwig-生理学研究所,德国莱比锡 04103。 4 美国马里兰州巴尔的摩市约翰霍普金斯医院神经外科部,邮编 21205。5 美国马里兰州巴尔的摩市约翰霍普金斯医院神经内科部,邮编 21205。6 美国马里兰州巴尔的摩市约翰霍普金斯医院病理科,邮编 21205。7 美国马里兰州巴尔的摩市约翰霍普金斯大学细胞动力学中心,邮编 21205。# 目前就职于美国田纳西州孟菲斯市圣犹大儿童研究医院发育神经生物学部,邮编 38105。通讯员:Kristina.Lippmann@medizin.uni-leipzig.de、dwnauen@jhmi.edu、shigeki.watanabe@jhmi.edu 负责人:Shigeki Watanabe、shigeki.watanabe@jhmi.edu 摘要 活体人脑组织为了解突触传递的生理学和病理生理学提供了独特的机会。研究仅限于解剖学、电生理学和蛋白质定位——而诸如突触囊泡动力学等关键参数则无法可视化。在这里,我们利用瞬时冷冻时间分辨电子显微镜来克服这一障碍。首先,我们用急性小鼠脑切片验证该方法,以证明可以刺激与电场平行的轴突产生钙信号。接下来,我们表明超快内吞作用被诱导并且可以在小鼠和人类脑切片中被捕获。至关重要的是,在这两个物种中,一种对超快速内吞至关重要的蛋白质 Dynamin 1xA (Dyn1xA) 位于活性区外围区域,即假定的内吞区,这表明小鼠和人类之间可能存在一种机制保守性。这种方法有可能揭示有关完整人脑切片中突触膜运输的动态高分辨率信息。关键词突触传递、时间分辨电子显微镜、冷冻、皮质、高压冷冻、突触囊泡内吞、超快速内吞、人类新皮质、受激辐射损耗显微镜、Dynamin 1xA、小脑、双光子钙成像
,我们基于通过介电油中的水滴进行了短路,开发了一种新的方法,用于传递可渗透细胞的分子。将细胞悬架液滴放在具有强烈直流电场的一对电极之间,液滴弹跳和液滴变形,这会导致瞬时短路,这取决于电场强度。我们已经证明了使用短路成功地转移了各种哺乳动物细胞。但是,分子机械主义仍有待阐明。在这项研究中,用Jurkat细胞进行流式细胞仪测定。用液滴弹跳或短路处理含有jurkat细胞的水滴和带有荧光蛋白的质粒。短路可导致24小时孵育后足够的细胞活力和荧光蛋白表达。在很重要的情况下,液滴弹跳并未导致成功转染基因转染。通过摄取可耐细胞荧光染料yo-pro-1和钙离子的涌入来研究瞬态膜孔的形成。结果,短路增加了Yo-Pro-1氟-1荧光强度和细胞内钙离子浓度,但液滴弹跳没有。我们还研究了内吞作用对转染的贡献。用内吞作用抑制剂对细胞的预处理以依赖性的方式降低了基因转染的效率。此外,使用pH敏感的染料偶联物表明在短路后内体中形成了酸性环境。内吞作用是细胞内递送外源性DNA的可能机制。