集成的布拉格光栅无处不在,在光学通信中找到了他们的主要应用。它们主要用作波长划分多路复用(WDM)的过滤器[1]。它们在激光器中用作分布式Bragg反射器(DBR)[2]和分布式反馈(DFB)激光器[3]的镜子。他们还找到了他们在传感中的应用[4]。此外,它们是集成腔分散工程的重要组成部分[5,6]。集成的Bragg反射器已使Fabry-Pérot(FP)微孔子中有趣的表演达到了实现。仔细研究这些空腔,对分散补偿策略的兴趣不大,例如,将分散元素补偿元素在空腔体系结构中[5]进行了整合。使用色散bragg反射器证明了综合微孔子中的耗散kerr孤子(DKSS)[7]。通常需要这些光源来产生非常短的脉冲持续时间,即飞秒级,用于高精度计量学级的飞秒源的应用,并用于产生跨越频率的宽带频率梳子,这些频率从数十吉赫赫兹到Terahertz。这种非线性机制开辟了增加相干光学通信系统带宽[8,9]的可能性,以满足增加的数据速率需求。最近,由两个光子晶体谐振器组成的Q-因子为10 5的纳米制作的FP谐振器已成功证明了KERR频率 - 兼而产生[10]。这个概念是在反射器的背景下进行分析描述的。因此,在FP微孔子中,布拉格反射器的广泛采用以进行分散补偿变得越来越重要。虽然用作反射器的Bragg光栅提供了广泛的功能,但设备物理学中存在一个潜在的问题。当光反射器反射光时,它不会从光栅开始的点上进行反映。为了解决这个问题,研究人员检查了渗透深度的概念或闪光的有效长度,称为l eff。该术语是指定义实际反射点的bragg反射器内的虚拟移位接口。
本文报道了钙钛矿太阳能电池的数值模型,该电池与分布式布拉格反射器对相结合以获得高能量效率。提出的电池的几何形状用三种不同的钙钛矿材料模拟,包括 CH 3 NH 3 PbI 3 、 CH 3 NH 3 PbBr 3 和 CH 3 NH 3 SnI 3 。与无毒钙钛矿材料相比,基于碘化铅和溴化铅的有毒钙钛矿材料似乎更有效。具有最高效率结构执行的模拟光伏参数为开路电压 = 1.409 (V)、短路电流密度 = 24.09 mA/cm 2 、填充因子 = 86.18% 和效率 = 24.38%。此外,对当前研究与不同类型结构进行了比较,令人惊讶的是,我们的新几何形状具有增强的性能参数,这些参数以背反射器对(Si/SiO 2 )为特征。应用的数值方法和所呈现的几何设计努力有利于获得有可能解决效率较低的薄膜太阳能电池问题的结果。
产生 X 射线的第一步是通过 25-35 kV 的大电位差加速电子。当电子撞击钼靶时,它们会通过称为轫致辐射(断裂辐射)的过程减速。当小质量带电粒子(例如电子)经过大质量带电粒子(例如钼原子核)附近时,就会产生 X 射线。电子通过多次散射原子核而快速减速,从而导致发射多条 X 射线,在极少数情况下,当电子将其所有动能都交给单个原子核时,会发射出一条高能 X 射线。最后一个过程对应于 X 射线能谱的终点能量,这可通过查看图 2 中所示的光谱左端来观察。钼表面(阳极)与入射电子束成一定角度,以利于在特定方向产生 X 射线。图 2 显示了钼靶的能量谱。距离其产生点不远处是一个准直管,它允许一条狭窄的水平 X 射线带通过,到达结晶的 NaCl 靶。当 NaCl 靶(搁置在测角仪上)相对于入射 X 射线的角度倾斜刚好正确(θ)时,就会发生建设性干涉,并且在位于 2 θ 角的盖革-穆勒管中可以观察到增加的计数率(计数/秒)。如图 3 所示。
摘要:飞行器的安全监测与跟踪越来越重要。在气动载荷作用下,飞行器机翼会产生较大的弯曲和扭转变形,严重影响飞行器的安全。飞行器机翼载荷的变化直接影响飞行器基线的地面观测性能。为了补偿机翼变形引起的基线变形,需要准确获取机翼外形的变形量。传统的飞行器机翼外形测量方法不能同时满足体积小、重量轻、成本低、抗电磁干扰、适应复杂环境等要求,用于飞行器机翼外形测量的光纤传感技术已逐渐被证明是一种具有许多优良特性的实时、在线动态测量方法。本文综述了光纤光栅传感器(FBG)的原理、技术特点和胶接技术。对比分析了其他测量方法的优缺点,重点分析了FBG传感技术在飞机机翼外形测量中的应用现状。最后对提高基于FBG传感技术的飞机机翼外形测量精度提出了综合建议。
1作物科学和农业验证系,捷克生命科学大学的热带农业学院,布拉格大学,kamin g cká129,165 00 00,捷克共和国29,165 00 165 00 00布拉格,捷克共和国3植物保护局,农业生物学,食品和自然资源学系,捷克生命科学大学布拉格,kamin cká129,165 00 00 129,165 00布拉格,捷克共和国5研究中心农业技术,尼特拉的斯洛伐克农业大学,tr。A. Hlinku 2,94976 Nitra,斯洛伐克 *通信:eloy@ftz.czu.cz
他曾任美国中央司令部 J6 C4 系统主任 (2019-2021 年);陆军网络司令部 G3 (2018-2019 年);陆军首席信息官/G-6 执行官 (2017-2018 年);夏威夷州沙夫特堡第 516 信号旅指挥官 (2015-2017 年);北卡罗来纳州布拉格堡第 528 支援旅 (特种作战) (空降) 第 112 信号营指挥官 (特种作战) (空降) (2012-2014 年);白宫通信局戴维营总统别墅特别任务司令部指挥官 (2010-2012 年);北卡罗来纳州布拉格堡美国陆军特种作战司令部信号中队指挥官 (2007-2010 年);信号中队作战官,美国陆军特种作战司令部,北卡罗来纳州布拉格堡 (2005-2006);Alpha 连队指挥官,第 112 信号营特种作战(空降),北卡罗来纳州布拉格堡 (2004-2005);信号中队执行官,美国陆军特种作战司令部,北卡罗来纳州布拉格堡 (2002-2004);战术通信部队指挥官,美国陆军特种作战司令部,北卡罗来纳州布拉格堡 (2000-2002);美国南方司令部作战指挥官通信官,巴拿马采石场高地 / 佛罗里达州迈阿密 (1997-2000);以及信号官,第 75 游骑兵团(空降)第 3 营,佐治亚州本宁堡 (1996)。
摘要:飞机的安全监测与跟踪越来越重要,在气动载荷作用下,飞机机翼会产生较大的弯曲和扭转变形,严重影响飞机的安全。飞机机翼载荷的变化直接影响飞机基线的地面观测性能,要补偿机翼变形引起的基线变形,需要准确获取机翼外形的变形量。传统的飞机机翼外形测量方法不能同时满足体积小、重量轻、成本低、抗电磁干扰、适应复杂环境的要求,而用于飞机机翼外形测量的光纤传感技术已逐渐被证明是一种具有许多优良特性的实时、在线动态测量方法。本文综述了光纤光栅传感器(FBG)的原理技术特点和胶接技术,对比分析了其他测量方法的优缺点,并着重分析了FBG传感技术在飞机机翼外形测量中的应用现状。最后对提高基于FBG传感技术的飞机机翼外形测量精度提出了综合建议。
摩尔中校曾任旅助理人力资源官、单位公共事务官、连队执行官,第 513 军事情报旅,佐治亚州戈登堡;营人力资源官;第 7 运输旅,北卡罗来纳州布拉格堡;第 189 战斗勤务支援营,布拉格堡,并被派往阿富汗;第 9 心理作战营,布拉格堡;第 8 军事信息支援行动组,布拉格堡;第 70 战斗支援营,凯西营,韩国;第 36 工程旅,得克萨斯州胡德堡,并被派往科威特;第三军副参谋秘书长,得克萨斯州胡德堡,并被派往科威特;人事经理兼裁决人,人力资源司令部、身体残疾机构,弗吉尼亚州水晶城;人力资本执行官、首席人力资本官执行官以及美国陆军未来司令部秘书长,德克萨斯州奥斯汀。
P HILIPPE T ROCHET、{M ILAN K OPE CEK、{R ADEK J AK SA、║ L UD EK S EFC、* 和 P AVEL K LENER y、x T AGED E * 捷克共和国布拉格查理大学第一医学院高级临床前成像中心 (CAPI);y 捷克共和国布拉格查理大学第一医学院病理生理学研究所;z 捷克共和国比尔森查理大学比尔森医学院生物医学中心组织学和胚胎学系;x 捷克共和国布拉格查理大学第一医学院大学总医院第一医学-血液学系;{荷兰阿姆斯特丹 FUJIFILM VisualSonics;和 ║ 捷克共和国布拉格查理大学第一医学院大学总医院病理学研究所