随着电子设备对冷却系统的需求不断增长,纳米流体-微通道散热器(MCHS)已成为热门话题。然而,解决纳米颗粒沉积问题是将该技术推向工业规模的关键。传统研究侧重于静态纳米流体的化学特性。然而,热物理因素也会影响流动流体的沉积。为了分析直微通道中 Al 2 O 3 -水纳米流体的热物理特性,使用离散相模型(DPM)模拟布朗力。结果表明,布朗运动对颗粒沉积有很大影响。然而,对于 MCHS 中的纳米流体,温度对平均自由程的影响可以忽略不计。沉积速率随颗粒直径的增加而降低,但随速度的增加而降低。这些结果在设计新的微通道结构时具有指导意义,并能提供减少沉积的最佳条件。关键词:纳米流体、MCHS、DPM、沉积非参数
非平衡浴中示踪物扩散的一般问题在从细胞水平到地理长度尺度的广泛系统中都很重要。在本文中,我们重新讨论了这种系统的典型示例:一组小的被动颗粒浸没在无相互作用的偶极微游泳体的稀悬浮液中,这些微游泳体代表细菌或藻类。特别是,我们考虑了由于微游泳体流场对示踪物的持续平流而导致的热(布朗)扩散和流体动力学(主动)扩散之间的相互作用。以前,有人认为,即使是适量的布朗扩散也足以显著减少示踪物平流的持续时间,从而导致有效主动扩散系数 DA 的值与非布朗情况相比显著降低。在这里,我们通过大规模模拟和动力学理论表明,这种影响实际上只对那些实际上保持静止但仍搅动周围流体的微型游泳器(即所谓的振动器)具有实际意义。相比之下,对于生物微型游泳器悬浮液中相关的中等和高游泳速度值,布朗运动对 DA 的影响可以忽略不计,导致微型游泳器的平流和布朗运动的影响具有累加性。这一结论与文献中的先前结果形成对比,并鼓励重新解释最近对细菌悬浮液中不同大小的示踪颗粒的 DA 的实验测量。
如今,基于状态的维护 (CBM) [1] 是制造业越来越多地尝试采用的一种维护策略,目的是降低设备单元的生命周期成本并延长其可用性。CBM 使用实时信息通过恢复设备单元的功能特性来优化维护时机。它基于设备单元的当前健康监测,因此添加预测工具来预测未来状态和预测维护非常重要。故障预测是 CBM 的主要任务之一。它根据状态监测信息估计设备单元的 RUL。通常,预测方法可以根据所用信息的类型分为三大类。这些类别 [2]、[3] 被定义为基于物理模型的方法、数据驱动的方法和基于融合的方法。基于物理模型的方法 [4] 使用显式数学模型来表示动态系统的退化。数据驱动的方法基于状态监测,
摘要。这项创新研究研究了微通道中含有旋转的微生物的三元杂化纳米流体的流动。分析了磁场,嗜热和布朗运动效应。使用组转换方法将PDES系统转换为ODE。创新的发现检查了牛顿和非牛顿模型,这些模型来自ODES系统。几个图说明了不同参数如何影响速度谱,温度,浓度和微生物。幂律指数值在n = 3时将流体流速度提高约9%,相对于边界层中心的n = 2.5的情况,n = 4时的36%。此外,与纳米流体相比,三元杂化纳米流体的温度更高。当前的结果与研究人员的发现进行了比较,以确认所获得的结果的有效性。当prandtl编号在6到10之间时,Nusselt号码达到45.49%。
具有各向异性,周期性电势景观的分子设备可以用作布朗电动机。当潜在的景观用化学反应或外力循环切换时,这种设备可以利用随机的布朗式波动产生定向运动。最近,用电动开关的DNA折纸转子带有设计的带有棘轮样的障碍物的电动DNA折纸转子来证明了定向的布朗运动状旋转运动。在这里,我们还证明了最初并未设计的DNA折纸转子的固有各向异性,因为布朗运动设备足以导致运动运动。我们表明,对于外部开关场的低振幅,这些设备作为布朗电动机运行,而在较高幅度下,通过过度阻尼电动机的确定性运动可以更好地描述运动。我们表征了这两个方案中运动的幅度和频率依赖性,表明在初始陡峭上升后,角速度峰值和下降,用于过度驾驶振幅和频率。转子运动的特征通过系统的简单随机模型很好地描述。
摘要当前研究的主要目的是开启非牛顿威廉姆森(Williamson)流动性的布朗运动和热疗法扩散的影响,并通过指数拉伸片段具有热辐射和微生物的生物感染的影响。为此,相似性函数涉及将部分微分方程传输到响应普通微分方程的情况。然后雇用了带有射击技术的runge -kutta方法,以评估使用MATLAB脚本的利用来评估所需的发现。流体速度在磁参数的强度上变得慢,并且以混合对流的形式提升。温度通过布朗运动和嗜热的参数升高。生物对流路易数字降低了速度场。与现有文献相比,结果显示出令人满意的一致性。2022作者。由Elsevier B.V.代表Alexandria University的工程学院出版,这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)下的开放访问文章。
摘要。本文通过考虑布朗运动和多孔培养基在拉伸表面上考虑Sutterby Nanofluid,讨论了微生物活性的影响。嗜热效应是涉及平衡流体温度以产生改进结果的措施。我们将这些效果包括在模型中,以及其他一些参数,例如布朗运动和微生物活性。分层现象被考虑用于评估Sutterby Nanofluid水平片上热量的产生/吸收。在不可压缩的Sutterby纳米流体中进一步分析了多孔培养基和与微生物活性的化学反应。借助一些合适的相似性转换,我们模型的初始边界条件和管理部分微分方程被转换为普通微分方程和最终边界条件的耦合结构。光谱准共线化方法(SQLM)用于数值求解这些普通的微分方程,以评估我们模型中采用的各种参数的影响。分析了不同参数的图形表示,以获取流量,温度,溶质和微生物分布。还分析了身体感兴趣的系数,并显示出良好的结果。纳米流体参数的上升降低了流体的流量,同时增强了热分层现象的温度曲线和下降。该模型是聚合物熔体以及高聚合物分辨率的理想选择。Sutterby Nanofluid模型还结合了膨胀溶液和伪塑料的行为,这对各种工程过程和行业都有帮助。
8补充135 8.1热力学的形式结构。。。。。。。。。。。。。。。。。。。135 8.2中心极限定理和较大的偏差。。。。。。。。。。。。。。。。136 8.3数字,单词和动物信号。。。。。。。。。。。。。。。。。。。。139 8.4大脑模型。。。。。。。。。。。。。。。。。。。。。。。。。。142 8.5应用信息原理。。。。。。。。。。。。。。。。。。。。。。。。。143 8.6探索或开发 - 指数策略。。。。。。。。。。。。。。145 8.7粒子碰撞中的记忆效应。。。。。。。。。。。。。。。。。。。147 8.8贝克地图。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。148 8.9多维重新归一化组。。。。。。。。。。。。。。。。152 8.10布朗运动。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。155 8.11在多维情况下的波动关系。。。。。。。。。。。。158 8.12量子波动和热噪声。。。。。。。。。。。。。。。。。160 8.13量子热化。。。。。。。。。。。。。。。。。。。。。。。。。。162
量子计算机尚未完成为财务分析师常用的实用随机扩散模型提供计算优势的任务。在本文中,我们介绍了一类随机过程,这些过程在模仿金融市场风险以及更适合潜在量子计算优势方面都是现实的。我们研究的模型类型是基于由马尔可夫链驱动的,具有可观察状态的制度转换波动率模型。基本模型具有几何布朗运动,其漂移和波动率参数由马尔可夫链的有限状态确定。我们研究算法以估计基于门的量子计算机上的信用风险和期权定价。这些模型使我们更接近现实的市场环境,因此更接近实用应用领域的量子计算。