在糖尿病管理的背景下,已经对两个具有潜在治疗价值的类黄酮(具有潜在治疗价值的类黄酮)进行了广泛研究。这项研究的主要目的是确定其作为治疗糖尿病及其并发症的治疗选择的潜力。本研究利用了一种系统的审查方法,并全面探讨了来自数据库的相关文献,包括PubMed,Scopus和Web of Science,从成立到2023年7月。审查总结了与肝素及其并发症中果皮素和果皮素的分子,细胞和母质作用相关的结果。犹他州胃蛋白酶通过调节炎症性细胞因子的调节和表达通过信号通过TOLL样受体/髓样分化因子88/NU-Clear因子-kappa B. Hesperidin的生物分子型核分子的核酸素,通过信号传导通过信号传导来预防糖尿病及其相关并发症的潜在治疗方法2与抗氧化剂反应元件相关的2因子2(NRF-2)导致神经保护作用。两种化合物都表明了使血糖水平正常化并降低血清和肝脂质水平的能力,从而使它们成为糖尿病中低血糖和低脂质血症的潜在候选者。HESPERIDIN还通过抑制转化生长因子-β1-整合素连接的激酶-AKT信号传导和增强肾功能来抑制糖尿病性肾病的潜在益处。这项系统的审查提供了支持此外,在糖尿病疾病中,黄质素的抗氧化剂,抗炎和抗抑郁作用扩大了其潜在的治疗应用。
新闻稿 新加坡,2023 年 11 月 27 日 新加坡南洋理工大学科学家在海洋塑料垃圾上繁茂的细菌和真菌群落中发现潜在威胁和有希望的资源 新加坡南洋理工大学 (NTU Singapore) 的一组科学家在被冲上新加坡海岸的塑料垃圾上繁茂的细菌和真菌群落中发现了潜在威胁和有希望的资源。 当塑料进入海洋时,微生物会附着并在它们中定殖,形成一个被称为“塑料球”的生态群落。 尽管全球海洋中有数百万吨的塑料垃圾,但人们对塑料球如何在热带海洋环境中组装和与塑料宿主相互作用知之甚少。 为了了解塑料与微生物的相互作用,NTU 的研究人员提取了从新加坡 14 个沿海地点收集的塑料球的 DNA 信息(见下图)。 他们发现样本上繁茂着潜在的食塑细菌和有害微生物。这项研究于 9 月发表在《环境国际》杂志上,是针对东南亚热带海洋和沿海环境(包括珊瑚礁、红树林、海草床、海滩和开阔水域)进行的少数塑料圈研究之一。这项研究的主要作者、新加坡环境生命科学工程中心 (SCELSE) 的 NTU 博士生 Jonas Koh 表示:“塑料圈可以影响塑料碎片的命运,例如将其分解成微塑料,导致它们下沉或漂浮。然而,人们对热带沿海海洋环境中塑料圈中的微生物种类知之甚少。它们如何相互作用?塑料碎片如何影响它们的发展?我们想知道这些问题的答案,这可以帮助决策者做出明智的决定,以减少对我们东南亚海洋生态系统的潜在威胁。”塑料圈影响沿海生态系统的健康
自2000年代以来,由于基因组医学的出现,医学肿瘤学领域已经取得了重大的科学进步。这已导致了分子生物学分析能力的重大进步,尤其是在DNA高通量测序技术(如下一代测序(NGS))中。这些医学进步伴随着靶向分子疗法的出现,这些疗法彻底改变了许多肿瘤的治疗策略。这些特定的疗法可能表现出不同的特征和功能,具体取决于它们作用的靶标(即细胞表面抗原,受体/信号转导途径,生长因子)(1)。结果,它们有助于调节细胞周期进程,细胞死亡,转移性传播和/或新血管生成。如今,许多靶向分子剂已得到食品药物管理局(FDA)的批准[即,抗皮肤生长因子受体(EGFR),抗植物衍生的生长因子受体(PDGFR),抗血管血管内血管内皮生长因子受体(VEGGFR),环蛋白依赖性KINERIB KINERIB(CDK)polotolib in-dolib-inim in-dip in-dive in-Cyclin-Kinib-of-Kinib-依赖性kinerib(CDK)对(PARP)抑制剂](1),在治疗广泛的晚期实体瘤方面取得了显着的临床成功。这些药物主要包括小分子酪氨酸激酶抑制剂(TKI)和单克隆抗体(mAb),它们根据目标水平的作用方式而有所不同。这些疗法可以单一靶向(即贝伐单抗,抗VEGF代理)
吲哚部分被认为是一种独特的核心支架,可以与不同类型的基因和蛋白质结合,并且具有易于合成技术和独家化学特性。这些特征使基于吲哚的支架成为药物化学研究化学家的主要探测器。利用吲哚部分的杂交技术可以提高功效,打击耐药性并降低最终化合物的副作用。 因此,最近已经报道了许多基于吲哚和2-氧气吲哚的杂种,并进行了临床前和临床研究。 但是,除了在不久的将来开发更有效的基于吲哚的脚手座,还可以在多静脉药药物疗法中获得更多的成就,但仍有更多的研究工作对于清楚地了解癌症治疗中的癌症起源和耐药性机制至关重要。 在这项综述研究中引入的这些吲哚和基于2-氧烷基的杂种的有前途的抗增生活性背后,有四种主要机制是蛋白激酶,DNA拓扑异构酶,组蛋白脱乙酰基酶(HDAC)和tubulin聚合抑制活性。 在此,这篇综述将简要说明新合成的吲哚和2-氧气吲哚的混合动力及其多种机制,以展示其有希望的抗增生活性,这将是进一步改善药物发明和消除耐药性问题的方法的宝贵步骤。利用吲哚部分的杂交技术可以提高功效,打击耐药性并降低最终化合物的副作用。因此,最近已经报道了许多基于吲哚和2-氧气吲哚的杂种,并进行了临床前和临床研究。但是,除了在不久的将来开发更有效的基于吲哚的脚手座,还可以在多静脉药药物疗法中获得更多的成就,但仍有更多的研究工作对于清楚地了解癌症治疗中的癌症起源和耐药性机制至关重要。在这项综述研究中引入的这些吲哚和基于2-氧烷基的杂种的有前途的抗增生活性背后,有四种主要机制是蛋白激酶,DNA拓扑异构酶,组蛋白脱乙酰基酶(HDAC)和tubulin聚合抑制活性。在此,这篇综述将简要说明新合成的吲哚和2-氧气吲哚的混合动力及其多种机制,以展示其有希望的抗增生活性,这将是进一步改善药物发明和消除耐药性问题的方法的宝贵步骤。
摘要:多发性骨髓瘤(MM)是一种常见的血液性恶性肿瘤,它促进了几种新的治疗方法来对抗新诊断或复发的MM。虽然该领域在过去的20年中一直存在,但大多数患者将对这些治疗产生抗性,从而导致需要新的治疗靶标。slAMF7是多发性骨髓瘤中的一个有吸引力的治疗靶标,靶向SLAMF7的单克隆抗体在迄今为止在临床试验中显示出一致的好处结果。在这篇综述中,我们将重点关注SLAMF7的结构和调节及其作用机理。将审查最新的临床试验,以进一步了解临床意义并改善MM的预后。此外,将讨论抗Slamf7单克隆抗体与标准疗法和可能的抗抗性机制的效率。本综述旨在详细概述SLAMF7在MM患者和基本原理的病原体中的作用,以进一步研究与MM发育相关的SLAMF7介导的分子途径。
摘要:N,C耦合的萘二喹啉生物碱Ancistrocladinium a属于具有有效抗体活性的新型天然产物。然而,尚未探索其对肿瘤细胞的影响。我们证明了多发性骨髓瘤(MM)中Ancistrocladinium a的抗肿瘤活性,这是一种无法治愈的血液癌,代表了适应蛋白毒性应激的模型疾病。生存能力测定显示,Ancistrocladinium a在MM细胞系中具有有效的凋亡诱导作用,包括具有蛋白酶体抑制剂(PI)耐药性和原代MM细胞的细胞系,但在非电气细胞中却没有。与PI CAR纤维纤维或组蛋白脱乙酰基酶抑制剂Panobinostat的伴随治疗强烈增强了Ancistrocladinium a诱导的细胞凋亡。质谱法具有生物素化的Ancistrocladinium a揭示了与RNA-剪接相关蛋白的显着富集。影响与RNA相关的RNA相关途径包括参与蛋白毒性应激反应的基因,例如PSMB5相关基因和热休克蛋白HSP90和HSP70。此外,我们发现了ATF4和ATM/H2AX途径的强烈诱导,在蛋白毒性和氧化应激之后,这两者都与综合细胞反应有关。综上所述,我们的数据表明,Ancistrocladinium a靶向MM中的细胞应激调节,并改善对PIS或克服PI耐药性的治疗反应,因此可能代表有希望的潜在治疗剂。
世界一半的人口生活在存在登革热的地区[1]。亚洲国家受到最大影响,报告了所有病例中约有70%[2]。尽管大多数感染是无症状的或轻度的,但会发生严重的登革热和死亡。登革热病毒(DENV)构成四种主要的不同血清型(DENV1-4)。一种具有一种血清型的感染可导致对该特定血清型的长期免疫力,但仅针对其他血清型的短暂免疫。第二种登革热感染是严重疾病的危险因素,但随后的感染并非如此[3]。原因尚不清楚,但通常归因于抗体依赖性增强(ADE)[4],其中交叉反应抗体形成免疫复合物,而不是中和病毒,从而导致病毒性增加和较高的SE Vere病。这种现象在登革热疫苗的发育中很重要,任何候选疫苗的疫苗应优选诱导所有四种血清型的长期免疫力。目前有两种活衰减的四位疫苗疫苗tar tar denv1-4,dengvaxia®和qdenga®。Dengvaxia®是基于黄热病主链的,于2015年引入。临床研究表明,对病毒学确认的登革热(VCD)的功效为60%[5]。但是,在随访的第三年
贫困和无家可归,以及“下游”行动,例如为目前受自杀行为影响的个人、家庭和社区提供高质量的支持。这很重要,因为有效的自杀预防包括一系列预防、干预和事后干预活动——以确保在人们需要时能够得到正确的反应。它提供了一个积极的规划和评估工具,允许制定、衡量和修订短期工作计划,并明确通过实现成果(而不是实施活动或完成产出)实现长期变化。需要强调的是,我们希望我们的许多行动能够促成不止一个结果(尽管可能有一个主要结果,预计会发生改变)。
HBB,β-珠蛋白基因; HBSS,镰状细胞突变的纯合子; HCT,造血细胞移植; RBC,红细胞; SCD,镰状细胞疾病; Voe,Vaso-Occlusive活动。 1。 Kato GJ等人。 nat Rev dis Primers 2018; 4:18010。 2。 Williams TN等人。 Annu Rev Genomics Hum Genet 2018; 19:113–147。 3。 Platt OS等。 NEJM 1 994; 330:1639–44。 4。 镰状细胞疾病。 可用:https://www.thelancet.com/pb-assets/lancet/gbd/summaries/diseases/sickle-cell-disorders.pdf。 2023年6月访问。 5。 Wastnedge E等。 J Glob Health 2018; 8(2):021103。 6。 镰状细胞疾病。 可用:https://www.nhlbi.nih.gov/health/sickle-cell-disease。 2023年6月访问。 3HBB,β-珠蛋白基因; HBSS,镰状细胞突变的纯合子; HCT,造血细胞移植; RBC,红细胞; SCD,镰状细胞疾病; Voe,Vaso-Occlusive活动。1。Kato GJ等人。 nat Rev dis Primers 2018; 4:18010。 2。 Williams TN等人。 Annu Rev Genomics Hum Genet 2018; 19:113–147。 3。 Platt OS等。 NEJM 1 994; 330:1639–44。 4。 镰状细胞疾病。 可用:https://www.thelancet.com/pb-assets/lancet/gbd/summaries/diseases/sickle-cell-disorders.pdf。 2023年6月访问。 5。 Wastnedge E等。 J Glob Health 2018; 8(2):021103。 6。 镰状细胞疾病。 可用:https://www.nhlbi.nih.gov/health/sickle-cell-disease。 2023年6月访问。 3Kato GJ等人。nat Rev dis Primers 2018; 4:18010。2。Williams TN等人。Annu Rev Genomics Hum Genet 2018; 19:113–147。 3。 Platt OS等。 NEJM 1 994; 330:1639–44。 4。 镰状细胞疾病。 可用:https://www.thelancet.com/pb-assets/lancet/gbd/summaries/diseases/sickle-cell-disorders.pdf。 2023年6月访问。 5。 Wastnedge E等。 J Glob Health 2018; 8(2):021103。 6。 镰状细胞疾病。 可用:https://www.nhlbi.nih.gov/health/sickle-cell-disease。 2023年6月访问。 3Annu Rev Genomics Hum Genet 2018; 19:113–147。3。Platt OS等。NEJM 1 994; 330:1639–44。4。镰状细胞疾病。可用:https://www.thelancet.com/pb-assets/lancet/gbd/summaries/diseases/sickle-cell-disorders.pdf。2023年6月访问。5。Wastnedge E等。J Glob Health 2018; 8(2):021103。6。镰状细胞疾病。可用:https://www.nhlbi.nih.gov/health/sickle-cell-disease。2023年6月访问。3