本研究旨在评估金融技术对埃塞俄比亚商业银行成本效率的影响。二级面板数据是从2011年至2022年期间的十二年中的十七个财政年度的审计年度报告中收集的。通过随机前沿方法调查了银行的成本效率。调查结果表明,在埃塞俄比亚运营的商业银行在成本管理方面有效,平均效率为83%。除了金融技术外,银行规模,利率传播利率,管理质量,汇率,资本化和银行所有权的影响对于成本效率也很重要。值得注意的是,金融技术在埃塞俄比亚的商业银行的成本效率中起着出色的作用。研究结果表明,金融创新平台与商业银行的成本效率之间存在积极关联。通过卡银行,移动银行和互联网银行提供的银行服务提高了埃塞俄比亚商业银行的成本效率。作为一种战略资源,银行业务中的金融创新通过减少非经济成本和交付银行服务所需的时间来提高银行的成本效益。为提高其成本效率,鼓励埃塞俄比亚的商业银行使用金融创新平台提供金融服务,并更新目前的成本管理策略,旨在减少产生和收取贷款以及支付的贷款和利息费用,以维持存款和其他利息债务。
表 1 目前正在研究用于治疗帕金森病的特定分子通路的候选药物。缩写 α -syn /α -突触核蛋白;alpha-突触核蛋白,AAV9;腺相关病毒载体 9,ADAS-cog;阿尔茨海默病评估量表-认知分量表,ATP;三磷酸腺苷,c-Abl;阿贝尔森酪氨酸激酶,CGIC;临床医生对变化的总体印象,CNS;中枢神经系统,CSF;脑脊液,GCase;葡萄糖脑苷脂酶,LRRK-2;富含亮氨酸重复激酶 2,MADRS-2;蒙哥马利阿斯伯格抑郁量表,MDS-UPDRS;运动障碍协会统一帕金森病评定量表,NMSS;非运动症状量表,SNCA; Alpha Synnuclein 基因,PD。
图 2:芯片上嵌入 hMO 的明场图像 (A)。沿施加的流动方向排列的神经胶质和神经元突起:TH(红色)、GFAP(绿色)、MAP2(洋红色)(B)。芯片上中脑微组织的生长曲线。通过混合效应分析和 Tukey 检验确定的统计学意义 *p<0.033、**p<0.002、***p<0.001(n=8-10,来自 3 个独立的类器官代)(C)。静态(上图)和动态(下图)培养的 hMO 的明场图像描绘了神经突生长的差异(左图)(D)。静态和动态培养的 hMO 的最大神经突生长率的箱线图。通过 Mann-Whitney 检验确定的统计学意义 *p<0.033、**p<0.002、***p<0.001。 (n >= 3,来自 3 个独立的类器官代)(F)。显微照片和 hMO 免疫组织化学染色切片的相应定量分析显示分化 35 天后凋亡标志物 caspase 3 存在显著差异。通过 Welch t 检验确定统计学意义 *p<0.033、**p<0.002、***p<0.001。柱状图和误差线表示平均值 ± SEM(n >= 3,来自 3 个独立的类器官代)(E、G)。分化 60 天后的完整中脑类器官:TH(红色)、GFAP(绿色)、MAP2(洋红色)、细胞核(蓝色)(H)。放大 60 倍的完整 hMO 核心的放大细节(H)(I)。MAP2 阳性神经元的免疫荧光染色(J)。 GFAP 阳性星形胶质细胞的免疫荧光染色 (K)。TH 阳性多巴胺能神经元的免疫荧光染色 (L)。中脑类器官中神经黑色素聚集体的明场图像 (右图) 和相应的 Fontana Masson 染色显示细胞内和细胞外神经黑色素聚集 (左图) (M)。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2022 年 4 月 19 日发布。;https://doi.org/10.1101/2021.04.24.441207 doi:bioRxiv preprint
摘要 脑信号解码有望在临床脑机接口 (BCI) 的发展中取得重大进展。在帕金森病 (PD) 中,目前已有首个用于自适应深部脑刺激 (DBS) 的双向 BCI 植入物。脑信号解码可以扩展自适应 DBS 的临床实用性,但神经源、计算方法和 PD 病理生理对解码性能的影响尚不清楚。这代表了未来神经技术发展中尚未满足的需求。为了解决这个问题,我们开发了一种基于术中感觉运动皮层电图 (ECoG) 和丘脑底 LFP 的侵入性脑信号解码方法来预测 11 名接受 DBS 的 PD 患者的握力(一种代表性的运动解码应用)。我们证明 ECoG 优于丘脑底 LFP,可准确解码握力。梯度增强决策树 (XGBOOST) 优于其他模型架构。基于 ECoG 的解码性能与运动障碍呈负相关,这可归因于运动准备和运动期间的丘脑底 β 爆发。这凸显了帕金森病病理生理对神经编码运动活力能力的影响。最后,我们开发了一种连接组分析,可以通过使用患者的连接组指纹来预测患者个体 ECoG 通道的握力解码性能。我们的研究为侵入性脑信号解码提供了一个神经生理学和计算框架,以帮助开发个性化的智能自适应 DBS 精准医疗方法。
目的:胶质母细胞瘤是一种异质性致死性疾病,受干细胞层次和神经递质微环境调控。临床需要确定针对单个癌症干细胞的化疗方案。方法:对机器人工作站进行编程,对胶质母细胞瘤干细胞 (GSC) 体外模型进行药物浓度与细胞生长分析。通过手动重复测定和获取进一步的参数,对选定的顶级物质进行作用方式分析。结果:我们确定了 22 种潜在治疗物质。三种物质表明神经递质信号调节剂有潜力重新用于靶向 GSC,其中帕金森治疗药物苯海索最有效。手动重复测定和初始作用方式表征显示细胞增殖、细胞周期和存活率受到抑制。结论:抗神经递质信号定向治疗有潜力靶向 GSC。我们建立了一个药物测试设施,能够定义体外癌症模型的中等规模化学反应组,可能也适用于其他细胞系统。
在帕金森病 (PD) 中,病理性高水平的 β 活动 (12-30 Hz) 反映了特定的症状,并通过药物或手术干预恢复正常。尽管接受深部脑刺激 (DBS) 的 PD 患者丘脑底核 (STN) 中的 β 特征现已转化为自适应 DBS 系统,但只有有限数量的研究表征了苍白球内部 (GPi) 中的 β 功率,而苍白球内部是同样有效的 DBS 目标。我们的目标是比较接受 DBS 的 PD 患者在休息和运动时 STN 和 GPi 中的 β 功率。37 名人类女性和男性参与者完成了一项简单的行为实验,包括休息和按下按钮的时间,从而从 19 个(15 名参与者)STN 和 26 个(22 名参与者)GPi 核中记录局部场电位。我们检查了整体 beta 功率以及 beta 时域动态(即 beta 爆发)。我们发现 GPi 在静息和运动期间的 beta 功率更高,运动期间 beta 失同步也更多。beta 功率与运动迟缓和僵硬严重程度呈正相关;然而,这些临床关联仅存在于 GPi 队列中。关于 beta 动态,GPi 和 STN 中的爆发持续时间和频率相似,但 GPi 爆发更强且与运动迟缓-僵硬严重程度相关。因此,不同基底神经节核的 beta 动态不同。相对于 STN,GPi 中的 beta 功率可能更容易被检测到,随着运动而发生更多调节,并且与临床损伤更相关。总之,这可能表明 GPi 是基于 beta 的自适应 DBS 的潜在有效目标。
帕金森病 (PD) 是第二大常见的神经退行性疾病和最常见的运动障碍,其主要病理特征是黑质(中脑的一部分)中的多巴胺能神经元主要变性。尽管经过数十年的研究,但该疾病起源的分子机制仍然未知。虽然该疾病最初被视为纯粹的神经元疾病,但单细胞转录组学的结果表明少突胶质细胞可能在帕金森病的早期阶段发挥重要作用。虽然这些发现具有很高的相关性,特别是对于寻找有效的疾病改良疗法,但少突胶质细胞在帕金森病中的实际功能作用仍具有很高的推测性,需要协同的科学努力才能更好地理解。这一未解之谜讨论了人们对 PD 中少突胶质细胞的有限理解,强调了有关少突胶质细胞的功能变化、髓鞘在黑质多巴胺能神经元中的作用、毒性环境的影响以及少突胶质细胞内 α-突触核蛋白的聚集等未解决的问题。
。CC-BY 4.0 国际许可 它是根据作者/资助者提供的,他已授予 medRxiv 永久展示预印本的许可。(未经同行评审认证)
深部脑刺激是一种广泛用于治疗帕金森病 (PD) 的方法,但目前缺乏对不断变化的临床和神经状态的动态响应。反馈控制有可能提高治疗效果,但“自适应”神经刺激的最佳控制策略和其他好处尚不清楚。我们在三名 PD 患者(五个半球)的正常日常生活中实施了由丘脑底核或皮质信号控制的自适应丘脑底核刺激。我们使用数据驱动的宽频率范围和不同刺激幅度的场电位分析来确定残余运动波动的神经生理生物标志物。任一部位的窄带伽马振荡(65-70 Hz)成为刺激期间感知的最佳控制信号。一项盲法随机试验表明,与临床优化的标准刺激相比,运动症状和生活质量有所改善。我们的方法凸显了基于数据驱动的控制信号选择的个性化自适应神经刺激的前景,并可能应用于其他神经系统疾病。