b' 在本研究中,我们报告了超快速瞬态热带 (THS) 技术用于测量氮化铝 (AlN) 薄膜各向异性热导率的实现情况。AlN 薄膜是通过在硅基板上制备的氧化硅 (SiO 2 ) 薄膜上在低温 (> 250 C) 下生长的反应性直流磁控溅射制备的。使用产生超短电脉冲\xc2\xad ses 的实验装置对热导率进行精确测量,并在纳秒和微秒时间尺度上电测量随后的温度升高。在 AlN 加工之前,将电脉冲施加在 SiO 2 上图案化的金属化条带内,并在 [0.1 \xe2\x80\x93 10 \xce\xbc s] 范围内选择的时间段内分析温度升高。当厚度从 1 \xce\xbc m 增加到 2 \xce\xbc m 时,AlN 横向平面(平面内)热导率分别从 60 增加到 90 W m 1 K 1(33 \xe2\x80\x93 44 W m 1 K 1)。这清楚地表明了 AlN 薄膜热导率的各向异性。此外,AlN 的体积热容量估计为 ~2.5 10 6 JK 1 m 3 。'
利用量子信息的特性来造福机器学习模型可能是量子计算领域最活跃的研究领域。这种兴趣支持了多种软件框架(例如 Qiskit、Pennylane、Braket)的开发,以实现、模拟和执行量子算法。它们中的大多数允许我们定义量子电路、运行基本量子算法并访问低级原语,具体取决于此类软件应该运行的硬件。对于大多数实验,这些框架必须手动集成到更大的机器学习软件管道中。研究人员负责了解不同的软件包,通过开发长代码脚本来集成它们,分析结果并生成图表。长代码通常会导致错误的应用程序,因为平均错误数量与程序长度成正比。此外,其他研究人员将很难理解和重现实验,因为他们需要熟悉实验中涉及的所有不同软件框架
摘要 利用量子信息的特性来造福机器学习模型可能是量子计算领域最活跃的研究领域。这种兴趣支持了多种软件框架(例如 Qiskit、Pennylane、Braket)的开发,以实现、模拟和执行量子算法。它们中的大多数允许我们定义量子电路、运行基本量子算法并访问低级原语,具体取决于此类软件应该运行的硬件。对于大多数实验,这些框架必须手动集成到更大的机器学习软件管道中。研究人员负责了解不同的软件包,通过开发长代码脚本将它们集成起来,分析结果并生成图表。长代码通常会导致错误的应用程序,因为平均错误数量与程序长度成正比。此外,由于需要熟悉代码脚本中涉及的所有不同软件框架,其他研究人员将很难理解和重现实验。我们提出了 QuASK,这是一个用 Python 编写的开源量子机器学习框架,可帮助研究人员进行实验,特别关注量子核技术。QuASK 可用作命令行工具来下载数据集、预处理数据集、量子机器学习例程、分析和可视化结果。QuASK 实现了大多数最先进的算法,通过量子核来分析数据,并可以使用投影核、(梯度下降)可训练量子核和结构优化的量子核。我们的框架还可以用作库并集成到现有软件中,从而最大限度地提高代码重用率。