当 HV 脚施加大于 40V 的电压时,内部高压电流源 对 V CC 脚外接的电容充电。为防止 V CC 在启动过程中短 路引起的功率损耗而使 IC 过热损坏,当 V CC 电压低于 1V 时,高压电流源的充电电流被限制为 I HV1 ( 1mA )。 当 V CC 大于 1V 后,高压电流源的充电电流变为 4mA_min , V CC 电压会迅速上升。当 V CC 超过启动水平 V CC_ON 时,高压启动电流源关闭。同时, UVLO 置高有 效, IC 内部电路开始工作。
分散的学习(DL)启用与服务器的协作学习,而无需培训数据,可以使用户的设备留下。但是,DL中共享的模型仍然可用于推断培训数据。传统的防御措施,例如差异隐私和安全汇总在有效地保护DL中的用户隐私方面缺乏牺牲模型效用或效率。我们介绍了Shatter,这是一种新颖的DL方法,其中节点可以创建虚拟节点(VN S)代表他们传播其完整模型的块。这通过(i)防止攻击者从其他节点收集完整模型,以及(ii)隐藏产生给定模型块的原始节点的身份。从理论上讲,我们证明了破碎的收敛性,并提供了正式的分析,揭示了与在节点之间交换完整模型相比,Shatter如何降低攻击的效力。我们评估了与现有DL算法,异质数据集的融合和攻击弹性,并与三个Standard隐私攻击进行评估。我们的评估表明,破碎不仅使这些隐私攻击在每个节点运行16个VN时不可行,而且与标准DL相比,对模型实用程序产生了积极影响。总而言之,Shatter在保持模型的效用和效率的同时,增强了DL的隐私。
a 3D 光学计量(3DOM)部门,布鲁诺凯斯勒基金会(FBK),Via Sommarive 18,38123,特伦托,意大利 franex@fbk.eu,http://3dom.fbk.eu b 特温特大学,地理信息科学与地球观测学院(ITC),地球观测科学系,P.O.Box 217,7500AE Enschede,荷兰 m.gerke@utwente.nl 第三委员会 - WG 1 关键词:图像匹配、DSM、马尔可夫随机场、图切割、平滑 摘要:如今,图像匹配技术可以提供非常密集的点云,它们通常被认为是 LiDAR 点云的有效替代方案。然而,与 LiDAR 数据相比,摄影测量点云通常具有更高水平的随机噪声和存在较大异常值的特点。这些问题限制了摄影测量数据在许多应用中的实际使用,但仍需找到增强生成点云的有效方法。在本文中,我们专注于从密集图像匹配点云计算出的数字表面模型 (DSM) 的恢复。摄影测量 DSM,即表面的 2.5D 表示,仍然是从点云派生的主要产品之一。提出了四种专门用于 DSM 去噪的不同算法:标准中值滤波方法、双边滤波、变分方法(TGV:总广义变分),以及一种新开发的算法,该算法嵌入马尔可夫随机场 (MRF) 框架并通过图计算进行优化
摘要目的——地面振动测试对于飞机设计和认证至关重要。快速松弛矢量拟合 (FRVF) 和 Loewner 框架 (LF) 最近扩展到机械系统中的模态参数提取,以解决时间和频域技术的计算挑战,用于航空相关结构的损伤检测。设计/方法/方法——FRVF 和 LF 应用于数值数据集以评估噪声稳健性和损伤检测性能。还评估了计算效率。此外,它们还应用于一种新的高纵横比机翼损伤检测基准,将其性能与最先进的方法 N4SID 进行比较。结果——FRVF 和 LF 可有效检测结构变化;LF 表现出更好的噪声稳健性,而 FRVF 的计算效率更高。实际意义——建议在有噪声的测量中使用 LF。原创性/价值——据作者所知,这是首次应用 LF 和 FRVF 提取航空相关结构中的模态参数的研究。此外,还介绍了一种新型高纵横比机翼损伤检测基准。
通过为整个系统和每个灯具注入智能,数字流明系统可以在需要的时间和地点提供照明,以最大限度地降低能耗。它还收集和报告所有照明使用数据,从而深入了解照明的使用方式和地点。
量子态断层扫描 (QST) 是量子处理器特性描述、验证和确认 (QCVV) 的重要工具。仅在少数理想化场景中,QST 的最优测量集才有解析结果。例如,在非退化测量设置中,QST 的最优最小测量算子集具有相互无偏的特征基。但是,在其他设置中,根据投影算子的秩和量子系统的大小,需要对高效 QST 的最优测量选择进行数值近似。我们通过引入定制高效 QST 框架来概括这个问题。在这里,我们扩展定制 QST,并在测量过程中应用的一些量子门有噪声的情况下寻找 QST 的最优测量集。为了实现这一点,我们使用了两种不同的噪声模型:首先是去极化通道,其次是单量子比特和双量子比特门的过度旋转和不足旋转(有关更多信息,请参阅方法)。通过将我们优化的 QST 测量集的重建保真度与仅使用乘积基的最先进的方案进行比较,我们证明了在实际噪声水平下使用纠缠门对两个量子比特的有效 QST 测量方案的好处。
摘要 脑电图 (EEG) 信号是神经科学研究和临床应用(如脑机接口和神经系统疾病诊断)的基础。这些信号通常是神经活动和噪声的组合,来自各种来源,包括眼球和肌肉运动等生理伪影。在这种情况下,我们解决了区分神经活动和噪声相关来源的挑战。我们开发了一种在频域中运行的新型 EEG 去噪模型,利用有关噪声频谱特征的先验知识自适应地计算用于噪声分离的最佳卷积滤波器。该模型经过训练可以学习一种经验关系,将噪声和噪声信号的频谱特性与允许信号去噪的非线性变换联系起来。在 EEGdenoiseNet 数据集上的性能评估表明,所提出的模型根据时间和频谱指标都实现了最佳结果。发现该模型可以从输入的 EEG 数据中去除生理伪影,从而实现有效的 EEG 去噪。事实上,该模型的性能与基准模型相当甚至更好,证明可以有效去除肌肉和眼部伪影,而无需对特定类型的伪影进行任何训练。
在容错方面,量子计算的实用性将取决于量子算法中噪声影响的可避免程度。混合量子-经典算法(如变分量子特征值求解器 (VQE))是为短期方案设计的。然而,随着问题规模的扩大,VQE 结果通常会因当今硬件上的噪声而变得杂乱。虽然错误缓解技术在一定程度上缓解了这些问题,但迫切需要开发对噪声具有更高鲁棒性的算法方法。在这里,我们探索了最近引入的量子计算矩 (QCM) 方法对基态能量问题的鲁棒性,并通过分析示例展示了底层能量估计如何明确地滤除非相干噪声。受此观察的启发,我们在 IBM Quantum 硬件上为量子磁性模型实现了 QCM,以检查随着电路深度的增加噪声过滤效果。我们发现 QCM 保持了极高程度的误差稳健性,而 VQE 则完全失效。在量子磁性模型中,对于多达 20 个量子比特的超深试验态电路(最多 500 个 CNOT),QCM 仍然能够提取合理的能量估计值。大量实验结果支持了这一观察结果。要达到这些结果,VQE 需要在错误率上将硬件改进大约 2 个数量级。
脑成像中普遍存在的一个挑战是噪声的存在,这会阻碍对潜在神经过程的研究,尤其是脑磁图 (MEG) 具有非常低的信噪比 (SNR)。提高 MEG 信噪比的既定策略包括对与同一刺激相对应的多次重复数据进行平均。然而,重复刺激可能是不可取的,因为潜在的神经活动已被证明会在试验过程中发生变化,而重复刺激会限制受试者体验到的刺激空间的广度。特别是,一次观看电影或故事的自然主义研究越来越受欢迎,这需要发现新的方法来提高 SNR。我们引入了一个简单的框架,通过利用受试者在经历相同刺激时神经反应的相关性来减少单次试验 MEG 数据中的噪声。我们在 8 名受试者的自然阅读理解任务中展示了它的用途,在他们阅读同一故事一次时收集了 MEG 数据。我们发现我们的程序可以减少数据中的噪声,并可以更好地发现神经现象。作为概念验证,我们表明 N400m 与单词惊讶的相关性(文献中已证实的发现)在去噪数据中比在原始数据中更明显。去噪数据还显示出比原始数据更高的解码和编码准确度,这表明与阅读相关的神经信号在去噪过程后得到保留或增强。