摘要 — 我们介绍了一种 SOI 波导耦合锗光电二极管,它在 2 V 反向偏压下具有非常高的 OE -3 dB 带宽 ≥ 110 GHz。这种性能是通过一种新颖的结构实现的,即将锗夹在两个原位掺杂的硅区域之间。这种制造方法可以避免将离子注入锗,这无疑有利于带宽,因为少数载流子扩散效应受到强烈抑制。在 1550 nm (-2 V) 时实现了 >0.6 A/W 的响应度,而该器件的暗电流约为 300 nA (-2 V)。据我们所知,这是最先进的锗光电探测器,具有带宽、最先进的响应度以及中等暗电流。我们证明,这种新型光电二极管可以高产量制造。
高速宽带分频器广泛应用于正交信号产生[1, 2]、时间交织THA和ADC系统[3, 4, 5]以及其他高速通信领域[6]。目前,已有多种基于不同拓扑和工艺的分频器被报道。特别地,InP DHBT在相同尺寸的器件下具有更高的击穿电压和更好的频率性能[7, 8],这意味着InP DHBT是高速分频器电路的更好选择。但是,电路的工作频率范围不能超过与器件工艺有关的截止频率ft的几分之一[9],这限制了电流型逻辑 (CML) 分频器的工作频率[9, 10]。为了提高分频器电路的高频性能,应努力提高相同ft 的器件的工作频率的利用率。已经发表了许多增强技术来扩展分频器的工作频率范围,例如电感峰值[9, 11, 12, 13],分流电阻负载[14, 15, 16],非对称锁存器[17],动态分频器[18, 19, 20, 21, 22]和双射极跟随器[23, 24]。然而,在电路设计中最大限度地利用器件ft的报道很少。本信
高速和宽频频率分隔线被广泛用于正交信号生成[1,2],时间间隔的THA和ADC系统[3,4,5],以及其他高速通信[6]。到目前为止,已经报告了基于不同拓扑和过程的许多分隔线。尤其是INP DHBT具有更高的击穿电压和相同尺寸的设备的频率性能更好[7,8],这意味着INP DHBT是高速分隔电路的更好选择。但是,电路的工作频率范围不会超过与设备过程相关的切割频率f t的一部分[9],这是电流模式逻辑(CML)划分器的工作频率[9,10]。为了提高分隔电路的高频电量,应提高效率以增加具有相同f t的设备的工作频率的利用。已经发表了许多增强技术,以扩展频率分隔符的工作频率范围,例如电感峰[9、11、12、13],分裂固定载荷[14、15、16],不对称闩锁[17],动态频率
2 尼日利亚河流州哈科特港河流州立大学计算机工程系 摘要 - 带宽分配和管理在满足应用程序的服务质量 (QoS) 要求方面发挥着至关重要的作用,并促进了以用户为中心的网络模型的转变。由于带宽是一种稀缺资源,传统的带宽分配方法逐渐被人工智能方法所取代,以提高带宽利用率。在本研究中,研究了鲸鱼优化算法 (WOA) 如何在无线网络中提供最佳带宽分配。WOA 是一种最近的群体智能方法,它模仿了座头鲸的觅食模式。在本研究中,带宽被分配给实时用户 (RTU) 和非实时用户,同时为未来用户保留带宽。模拟是在 MATLAB 中实现的,并从连接概率的角度讨论了结果,重点关注可用带宽和网络上的 RTU 数量。从结果来看,提出的 WOA 技术有效地优化了分配给用户的带宽,并展示了少量带宽的带宽管理。索引术语-鲸鱼优化算法、带宽分配、服务质量、无线网络、连接概率
传播、下载数据 1 持久自由行动 (OEF) 是阿富汗战争的正式名称,该战争始于 2001 年 10 月,至今仍在进行中。伊拉克自由行动 (OIF) 是伊拉克战争的正式名称,该战争始于 2003 年 3 月,结束于 2011 年 12 月。 2 X 波段是电磁频谱微波无线电区域的一部分,雷达频率为 8.0 – 12.0 GHz。X 波段的较短波长允许高分辨率成像雷达提供更高分辨率的图像,以进行目标识别和区分。