Olivier Bylicki,Pascale Tomasini,Gervais Radj,Florian Guisier,Isabelle Monnet等人。在有或没有贝伐单抗和铂 - 甲状腺单抗和铂 - 铂和铂phepemetrex的患者中,均具有IIIB/IIB/IV期无质细胞癌的患者Alk Mutaps,Alk farties of Alk farrang the the the Stage factery of Alk farrap trrapect:多中心II期开放标签非随机研究GFPC 06-2018。欧洲癌症杂志,2023,183,pp.38-48。10.1016/j.ejca.2023.01.014。hal-04016683
抽象的兰花(兰花科)是以其鲜花形状,颜色和香气归因于其高度美学价值而闻名的装饰植物。两种类型的混合兰花和吸引人的花朵,即phaenopsis的“牛皇后”兰花和树突状'Cheddi Jagan'的花朵在这项研究中使用了迷人的花朵,因为其花色的美丽。这项研究的目的是表征诱导花颜色的花色和CHS(Chalcone合酶)基因含量的形态。这项研究中使用的方法通过使用RHS(皇家园艺学会)的颜色图和分子分析,通过DNA基因组分离和GDNA的PCR扩增CHS基因特异性引物,分析了花朵的颜色。结果表明,使用p。通过RHS观察到紫色。'ox Queen'编码为深紫色粉红色(N73A)和d。'Cheddi Jagan'编码为强红色紫色(N72C)。CHS基因可以在p中扩增。'牛皇后'1,287 bp和d。'Cheddi Jagan'3,731 bp。在两个兰花中,放大的结果显示了具有保守域PLN03172和PLN03170的CHS基序。研究结果表明,兰花花的形态存在显着差异。紫色可以通过RHS观察到p。'ox Queen'编码为n73a和d。'Cheddi Jagan'编码为N73C。结果表明,根据Murray和Thomson的使用CTAB方法可以分离GDNA,并且CHS基因可以通过CHS引物可以扩增,从而产生1200 bp的p。'Cheddi Jagan'。'ox Queen'和2500 bp d。通过这项研究,预计将对未来的研究进行初步数据,这是通过编辑CHS基因中的CRISPR/CAS9基因组来形成杂色花的。这项研究旨在支持p。'牛皇后'和d。'Cheddi Jagan',使用CRISPR/CAS9技术专注于CHS基因。版权所有:©2024,J.热带生物多样性生物技术(CC BY-SA 4.0)
是物联网的“眼睛”和“耳朵”,光学传感器和声学传感器是硬件系统中的基本组合。如今,主流硬件系统通常包含众多离散的传感器,转换模块和处理单元,往往会导致与人类感觉途径相比,相比之下,复杂的体系结构效率较低。在这里,提出了一种受人感知系统启发的视觉原告光电探测器,以启用具有计算能力的多合一视觉和声学信号检测。此范围不仅捕获了光,还可以光学记录声波,从而在单个单元中实现“观看”和“聆听”。栅极可调阳性,负和零光呼应会导致高度可编程的疾病。此可编程性可以执行各种函数,包括视觉特征推断,对象分类和声波操纵。这些结果展示了在神经形态设备中扩展受访方法的潜力,从而开辟了新的可能性来制作智能和紧凑的硬件系统。
现代神经科学的挑战之一是创建基于体外神经网络的“活计算机”。这样的人造装置应该执行神经计算任务,并在体现在机器人中时与环境相互作用。最近的研究确定了最关键的挑战,即寻找神经网络体系结构来实施关联学习。这项工作提出了一个模块化体系结构模型,该模型通过单向耦合连接的尖峰神经网络。我们表明该模型可以根据Pavlovian的调节训练神经机器人。机器人在回避障碍物中的性能取决于网络间耦合中的权重比。我们表明,除了STDP外,成功学习的关键因素是突触和神经元竞争。我们使用最近发现的最短路径规则来实施突触竞争。此方法已准备好进行实验测试。强抑制耦合在负责无条件响应的子网中实施神经元竞争。对这种方法的经验测试需要一种技术,用于增长具有给定兴奋性和抑制性神经元比率的神经网络。一种替代方案是建立一个混合系统,其体外神经网络通过硬件复合连接结合。
摘要:石墨烯纳米纤维(GNR)由于具有高度可定制的物理化学特性和纳米电子学的潜在效用而引起了浓厚的兴趣。除了控制宽度和边缘结构之外,在GNR中包含手性的还带来了另一个维度来微调其光电特性,但是由于缺乏可行的合成策略,相关研究仍然难以捉摸。在这里,我们演示了具有可调手性载体(N,M)的新型Cave-Edged手性GNR(CCGNR)。值得注意的是,(n,2)-CCGNR的带隙和有效质量与n的增加值呈明显正相关,如理论所示。在这个GNR家族中,成功合成了两个代表成员,即(4,2)-CCGNR和(6,2)-CCGNR。两个CCGNR均表现出由沿其外围的掺入[4]螺旋序引起的尤其弯曲的几何形状,也证明了两种相应模型化合物的单晶结构(1和2)也证明了这一点。通过IR,Raman,Raman,Solit-State NMR,UV-VIS和THZ光谱镜以及理论计算的组合,全面研究了(4,2) - 和(6,2) - CCNR的化学身份和光电特性。符合理论期望,获得的(6,2)-CCGNR具有1.37 eV的低光带隙,以及〜8 cm 2 v -1 s -1的电荷载流子迁移率,而(4,2)-CCGNR表现出1.26 EV的较窄频率为1.26 EV,其移动性为〜14 cm 2 v -1 s -1 s -1 s -1 s -1。这项工作为通过操纵手性载体而精确地设计了GNR的带盖和载体移动性的新途径。
摘要:石墨烯纳米纤维(GNR)由于具有高度可定制的物理化学特性和纳米电子学的潜在效用而引起了浓厚的兴趣。除了控制宽度和边缘结构之外,在GNR中包含手性的还带来了另一个维度来微调其光电特性,但是由于缺乏可行的合成策略,相关研究仍然难以捉摸。在这里,我们演示了具有可调手性载体(N,M)的新型Cave-Edged手性GNR(CCGNR)。值得注意的是,(n,2)-CCGNR的带隙和有效质量与n的增加值呈明显正相关,如理论所示。在这个GNR家族中,成功合成了两个代表成员,即(4,2)-CCGNR和(6,2)-CCGNR。两个CCGNR均表现出由沿其外围的掺入[4]螺旋序引起的尤其弯曲的几何形状,也证明了两种相应模型化合物的单晶结构(1和2)也证明了这一点。通过IR,Raman,Raman,Solit-State NMR,UV-VIS和THZ光谱镜以及理论计算的组合,全面研究了(4,2) - 和(6,2) - CCNR的化学身份和光电特性。符合理论期望,获得的(6,2)-CCGNR具有1.37 eV的低光带隙,以及〜8 cm 2 v -1 s -1的电荷载流子迁移率,而(4,2)-CCGNR表现出1.26 EV的较窄频率为1.26 EV,其移动性为〜14 cm 2 v -1 s -1 s -1 s -1 s -1。这项工作为通过操纵手性载体而精确地设计了GNR的带盖和载体移动性的新途径。
摘要 - IntraCorical Brain机机界面已显示出对瘫痪者恢复功能的希望,但是将其转换为便携式和可植入的设备受到高功耗的阻碍。与标准的实验性脑机插图相比,最近的设备已大大降低了功耗,但是,但是stillrequirewiredorwiredorwiredlessconnections可以计算硬件以进行特征提取和推理。在这里,我们在180 nm CMO中引入了一种神经记录和解码(神经)应用程序(神经)应用程序(ASIC),可以提取神经尖峰特征并实时预测二维行为。为了减少放大器和特征提取功率消耗,神经辐射具有一个硬件加速器,用于从物质内尖峰信号中提取尖峰带功率(SBP),并包括具有固定点矩阵加速器(MAU)的M0处理器,以实现效率和效率的分解。我们通过从植入犹他州微电极阵列植入的非人类灵长类动物的SBP验证设备功能验证了功能,并预先指定了一个和二维的手机运动,Mon-键试图使用稳态的kalmanfientate kalmanfilmanfilter lter(sskf)试图在闭环中执行。使用Neurad的实时预测,猴子达到了100%的成功率,并通过