586/2020,决议795/2019灯 - 性能规格标签标准标准:IEC 60901 - 单层荧光IRAM 62404-1灯 - 性能规格IRAM 62404-2 IEC 60969 - IRAM 62404-3荧光灯灯,效果62626262626262626261261261.带电压电压的通用照明服务> 50 V - 性能等式电动机TR:处置230/2015 IEC 60034-1 - 旋转电机 -
其中 Dy 3+ 掺杂的铝酸钙 (CaAl 2 O 4 :Dy 3+ ) 是一种著名的无机荧光粉,在紫外激发下可发出白色光致发光 (PL)。5 CaAl 2 O 4 :Dy 3+ 除了白色的 PL 之外,即使去除紫外激发后,仍呈现白色的余辉。6 根据 Liu 等人在 2005 年报道,Dy 3+ 是 CaAl 2 O 4 :Dy 3+ 余辉的发光中心,在最佳掺杂浓度为 2 at% 时,固相反应生成的 CaAl 2 O 4 :Dy 3+ 的白色余辉持续时间为 32 分钟。 6 对于辉光材料,带电载流子的激发、迁移、捕获、释放和辐射复合过程对于理解其辉光性质至关重要。 7 – 9 例如,只有当陷阱具有适当的活化能(大约 0.65 eV)时,才能在室温下实现长时间的辉光,而浅陷阱(E # 0.4 eV)和深陷阱(E > 2 eV)并不理想,因为它们在室温下很容易或很难被清空。 7 到目前为止,只有一篇关于 CaAl 2 O 4 :Dy 3+ 辉光的报道,没有完全揭示带电载流子的激发、迁移、捕获和释放过程。缺乏这方面的知识阻碍了对辉光材料的进一步研究。
,我们提出了一种通过采用拉格朗日点的外来特性来指导带电颗粒(例如电子和质子)的方法。通过围绕这些平衡点展开的动力学使这种飞跃成为可能,稳定地捕获了这种粒子,类似于木星轨道上的木马小行星的方式。与传统的方法论不同,该方法可以使带电颗粒的聚焦或三维储存,而拟议的方案可以指导小型横截面区域中的非偏见和相对论电子和质子在长期不变的情况下以长期不变的方式引导,而无需任何可观的能量损失 - 与光子传输相似于光子的光合物。在这里,通过采用扭曲的静电电势来实现粒子引导,而静态电势又在真空中引起稳定的拉格朗日点。原则上,可以在由此产生的波导的基本模式中实现指导,从而提出了在量子域中操纵这些颗粒的前景。我们的发现可能在科学和技术追求的广泛应用中很有用。这些应用可以涵盖电子显微镜和光刻,粒子加速器,量子和经典通信/传感系统,以及量子网络中节点之间的纠缠量子的方法。
摘要 – 高能带电等离子体粒子对空间技术构成威胁。带电粒子在航天器主体上的积累会产生放电。静电放电是强大的电磁干扰源,会对各个部件和整个系统的运行产生不利影响。据统计,大约 30% 的卫星损失是放电的结果。在航天器运行之前,需要计算电流的扩散,这需要大量的机器和时间成本。本文提出了一些新颖的方法,用于快速构建由于带电而导致的航天器表面电流扩散的图像。第一种方法的关键点是构建一个用于计算流量扩散的有限区域。瞬态电流的计算将仅在用户指定的电磁兼容区域内进行,而不会影响其余部分。本文还基于欧拉方法开发了新的简化微分方程组计算方案。借助新的计算方案,计算用户指定的局部区域中的未知量的时间与计算未知的全模型相比减少了几个数量级。本文对新的计算方案进行了总结,指出了其构造的复杂性。通过实例验证了新计算方案的充分性和准确性。
2. 学生使用上图所示的装置进行实验,研究两个带电物体之间的力。该装置包含两个相同的导电球。上部球体连接到绝缘绳上,绝缘绳可用于将球体向下移动。下部球体位于绝缘杆上,绝缘杆位于电子天平上。在下部球体和绝缘杆就位之前,电子天平已归零。
预防微生物感染是一项全球性挑战。有效的抗菌涂层可在接触后迅速杀死微生物,有助于最大限度地减少微生物的传播。然而,它们的可扩展合成具有挑战性。这项工作展示了自消毒纳米薄膜的可扩展合成和表征,用于医院相关表面的后期改造。它们的抗菌作用基于超带电阳离子表面膜和带负电的细菌膜之间的电荷相互作用。在棉布(防护服)、丁腈橡胶(防护手套)和玻璃表面(桌子、屏幕)上,使用光引发本体聚合风干的 [2-(甲基丙烯酰氧基) 乙基] 三甲基氯化铵薄膜来增强其带电性,并通过流动电位测量进行研究。通过光谱成像椭圆偏振法和 X 射线光电子能谱法的组合,可以看到以阳离子季胺基团为主的 6 纳米厚涂层。涂层表面的抗菌体外评估表明,在不到 5 分钟的时间内,细菌数量减少了约 4 个对数。共聚焦激光扫描显微镜和活死染色证实了表面诱导的细菌杀灭作用。该涂层的一系列兼容材料及其快速杀菌活性可以对抗细菌的表面传播,并可能有助于遏制传染病的传播。它在环境条件下的合成有望融入工业流程。
传记摘要John R. Harris博士是新墨西哥州阿尔伯克基空军研究实验室的高级研究工程师。他获得了学士学位2000年杜克大学物理学学位和硕士学位 和Ph.D. 2002年和2005年,马里兰大学电气工程学位。 在2005年至2009年之间,他在劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory)的加速器设计和代码小组中,从2009年到2012年,他担任海军研究生院的研究助理教授,从2012年到2016年,他是科罗拉多州立大学的研究科学家。 哈里斯博士的专业利益涵盖了带电颗粒梁的生产,运输,加速和使用,以及高压,脉冲功率和定向能源系统。 他是在裁判期刊和会议记录中的85篇文章的作者或合着者,拥有三项美国专利,并且是IEEE的高级成员。2000年杜克大学物理学学位和硕士学位和Ph.D. 2002年和2005年,马里兰大学电气工程学位。在2005年至2009年之间,他在劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory)的加速器设计和代码小组中,从2009年到2012年,他担任海军研究生院的研究助理教授,从2012年到2016年,他是科罗拉多州立大学的研究科学家。哈里斯博士的专业利益涵盖了带电颗粒梁的生产,运输,加速和使用,以及高压,脉冲功率和定向能源系统。他是在裁判期刊和会议记录中的85篇文章的作者或合着者,拥有三项美国专利,并且是IEEE的高级成员。