摘要。构建了一种基于自然交互行为手势的微型旋翼飞行器控制方法。为了实现通过手势控制微型旋翼飞行器的飞行姿态,通过Leap Motion控制器获取手掌平放姿态数据,通过坐标系变换和姿态角变换将数据转换为不同坐标系之间的旋翼飞行器姿态控制命令,并通过无线传输模块与微型旋翼飞行器进行通信,搭建了微型旋翼飞行器控制系统,实现了对旋翼飞行器的上升、悬停、降落、俯仰等飞行动作的控制。在实际实验中,通过不同的手势实现了对微型旋翼飞行器的飞行姿态控制。通过手势控制微型旋翼飞行器更符合自然交互的特点,是人机交互的一种延伸。
1.1 复合直升机示例。........................3 1.2 倾转旋翼飞机示例。。。。。。。。。。。。。。。。。。。。。。。。。3 1.3 前飞对后退叶片速度的影响。.........4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后退叶片升力来平衡旋翼力矩的需要,可以缓解后退叶片失速,就像在单旋翼飞行器中一样(左图)[5]。..。。。。。。。。。。。。。。。。。。。。。。。。..4 1.5 兰利全尺寸风洞中的 PCA-2 转子测试装置 [11]。.9 1.6 带有悬臂转子配置的 Meyer 和 Falabella 风洞测试装置 [12]。.............................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾取器 [12]。.12 1.9 1965 年詹金斯在兰利全尺寸风洞中的测试装置 [13]。.14 1.10 高前进比时转子推力和 H 力系数与总距 (A0) 的关系,显示总距推力反转 [13]。..........15 1.11 反向速度转子风洞模型中使用的“可逆”翼型截面轮廓 [16]。.........................18 1.12 为反向速度转子风洞模型开发的每转两个斜盘 [16]。.。。。。。。。。。。。。。。。。。。。。。。。。...19 1.13 在恒定盘面载荷下测量的有效转子升阻比,以提高前进比 [16]。.......................21 1.14 升力对总距比与前进比的敏感度变化 [16]。....22 1.15 位于 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中的仪表化 UH-60A 空气负载旋翼 [17]。...。。。。。。。。。。。。。。。。。。。。。。24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。...................................26 1.18 不同推进比下的升阻比与升力零和正 4 度轴,40% NR [18]。。。。。。。。。。。。。。。。。。。。。。。27
近来,无人机 (UAV) 作为一个快速发展的领域,吸引了越来越多的科学家和消费者的关注。人们对多旋翼无人机尤其感兴趣,它们因其低速飞行、悬停和垂直起降能力而被认为是用于高质量航空摄影、摄像、监控和其他地形探索的良好飞行平台。所述特性使它们易于在空间有限的条件下使用。显然,这种飞行器的行为是不稳定的,因此需要负责稳定和导航功能的飞行控制系统 (FCS)。此外,FCS 能够提供完全自主飞行的能力。当代电子技术的快速发展使得制造低成本和紧凑型 FCS 成为可能。然而,实施的测量单元的精度不高。多传感器数据融合是提高精度的方法之一。本文介绍了 FCS 开发中需要指导的要求和一般概念,以及飞行测试中获得的结果及其比较。特别关注多传感器数据融合方法,该方法可以提高飞行精度和可靠性。此外,还提供了硬件和软件架构的描述。
重新鉴定。根据合同供应的材料应在制造公差范围内与接收鉴定的产品相同。本节中的要求仅限于 IV、V 和 VI 型。附录 A 中列出了 II 型和 III 型底漆的特定要求以及现有导弹体的要求。3.2 颜色。底漆的颜色应为二氧化钛颜料的特征颜色,或浅米色或灰色,且不深于 SAE-AMS-STD 595 的色卡编号 26622。3.3 成分。底漆应由两种成分组成:成分 A(着色环氧树脂)和成分 B(催化剂)。当两种成分以适当的比例混合时,所得底漆应满足本规范的适用要求。3.3.1 颜料。IV 型、L 级、成分 A 的成分应符合表 I 中规定的重量百分比要求。所有其他类型/等级应由制造商指定。颜料不得含有 HAP。禁止使用锑、砷、铍、镉、钴、铬、氰化物、铅、锰、汞、镍和硒的化合物。
本报告收录了亚利桑那州立大学校长 Michael M. Crow 于 2008 年发表的一篇题为“打造创业型大学”的文章。该报告以亚利桑那州立大学为例,主要关注研究型大学的作用以及他如何能够改变文化,使大学的行为更像一家私营公司——“灵活、有竞争力、适应性强,能够响应我们选民和全球社会不断变化的需求”——而不是传统大学(第 2 页)。Crow 认为,他和他的亚利桑那州立大学同事已采取措施“将公立教育重新定义为以解决方案为中心的机构,将最高水平的学术卓越性、最大的社会影响力和对尽可能广泛的人口的包容性结合起来”(第 2 页)——结论是,现代大学必须在卓越和致力于广泛普及之间做出选择是一种错误的二分法。本文还包括对研究型大学发展的历史分析、对美国当代人口趋势的总结以及 ASU 采用创新基础设施和“系统创新方法”的努力(第 14 页)。
克劳塞维茨在他的著作《战争论》第一章中曾说过,战争的本质是永恒的,但战争的特征却在不断变化。1 今天,我们正处于战争特征变化的另一场运动的边缘,因为它与我们的近战部队理解战场和分享这种理解的能力有关。随着海军陆战队专注于由指挥官的部队设计愿景以及技术的不断扩展和不断发展所构建的新未来,海军陆战队步兵班将经历使用武器、光学和装备方式的巨大转变,从而为战争的实施方式带来不断变化的特征。指挥官在其规划指导中指出,传统上,步兵连是能够协调全系列联合兵种的最低层级,但电子设备的小型化和处理能力的提高使对手能够为个人和小型单位提供联合兵种能力。我们必须通过将联合兵种推向班组来与这一威胁相等或更好。2 海军陆战队在优先采购当今海军陆战队可用的最佳夜视和武器光学设备方面做得非常出色,例如班组双目夜视镜或 PVS-31s 和班组通用光学设备,但未来的光学系统将在能力方面实现跨越式发展,对消费、生产和共享数据的需求不断增加。大型陆军计划,如综合视觉增强系统 (IVAS),
使用数字技术是维多利亚时代课程F-10的强制性组成部分。安全,适当地使用数字技术,包括互联网,应用程序,计算机和平板电脑,可以为学生提供丰富的机会,以多种方式支持学习和发展。通过增加对数字技术的访问,学生可以从互动,协作,个性化,引人入胜和变革性的学习中受益。数字技术使我们的学生能够与学生互动并创建高质量的内容,资源和工具。它还可以针对学生的特定需求和兴趣量身定制个性化学习,并改变评估,报告和反馈,推动新形式的协作和沟通形式。Maffra中学认为,在学校使用数字技术可以发展有价值的技能和知识,并使学生在我们的全球化和相互联系的世界中蓬勃发展。我们学校的愿景是授权学生安全地使用数字技术
摘要 — 我们提出了一种新型振荡器,通过设计两个耦合周期波导的色散来呈现简并带边 (DBE)。DBE 是四阶特殊简并点 (EPD),即表示波导系统的四个本征模式无损耗和增益的融合。我们提出了一种分布式 DBE 振荡器,该振荡器在周期耦合传输线中实现,具有独特的模式选择方案,即使在负载变化的情况下也能实现稳定的单频振荡。由于与 EPD 概念相关的独特功能,DBE 振荡器有可能提高 RF 源的效率和性能。这类振荡器有望改进离散分布式相干源,并可扩展到辐射结构以实现新型有源集成天线阵列。
PowerCu Soft 键合带是 Heraeus 下一代功率器件的首选材料,可使模块工作温度高于 250°C。与标准铝键合带相比,PowerCu Soft 键合带具有出色的导电性、更高的熔断电流值和非凡的机械性能。它非常适合用于高工作温度和最高稳健性挑战的先进封装模块。由于铝和铜的机械性能不同,处理 PowerCu Soft 键合带需要更高的键合力和特殊的耗材。稳定且可控的键合工艺需要坚固的正面铜金属化。Heraeus Die Top System (DTS) 可提供完美的匹配解决方案。
