步骤2:摄像头:默认高摄像头分辨率和帧率。步骤3:DCRFR:3x3 视频通话。是,转至步骤5。否,转至步骤4 步骤4:DCRFR:屏幕共享。是,转至步骤5。否,转至步骤2 步骤5:摄像头:降低摄像头分辨率和帧率。在3x3 视频通话或屏幕共享时,我们会将摄像头设置更改为降低摄像头分辨率和帧率。您可以在下一页看到屏幕。3x3 通话或屏幕时,摄像头视频较小。我们希望用户不会专注于一个摄像头视频。在这些情况下,我们不需要提供高分辨率和帧率。步骤6:DCRFR:系统功耗降低。您可以在下一页看到示例。当摄像头分辨率和帧率从1080p/30fps 降低到360p/15fps 时,系统功耗可以从10W 降低到8W。步骤7:用户:电池寿命延长,但对用户的影响较小。您可以在下一页中看到示例。电池寿命可以从 6 小时延长到 7.5 小时。共享屏幕或 3x3 视频通话时,由于摄像头视频较小,因此对用户的影响较小。出席者将专注于共享屏幕,而不是摄像头视频。用户摄像头 DCRFR
未来战略性 X 射线天文学任务(如 AXIS [ 1 ])建议将大收集面积反射镜与大型、快速、宽视场成像仪相结合。高帧速率对于最大限度地减少点源的堆积影响以及减轻粒子背景对微弱弥散气体研究的影响至关重要。同时,还必须保持低噪音和出色的软 X 射线能量响应以满足关键的科学目标。除了所需的帧速率外,最先进的 CCD 几乎能够提供此类任务的所有关键性能指标。大型探测器的快速帧速率可带来非常高的有效像素速率。我们斯坦福大学的团队正在与麻省理工学院 (MIT) 和麻省理工学院林肯实验室 (MIT-LL) 合作,通过多管齐下的方法解决这一技术差距。为了实现更高的帧速率,我们正在努力提高单个输出的读出速度和每个 CCD 可以并行运行的输出数量。图 1 显示了适用于 AXIS 焦平面的可能 CCD 模块概念。单个输出的速度提高源于 CCD 输出级优化、通过使用专用 ASIC 减少寄生输出负载以及对视频波形使用数字信号处理。读出 ASIC 还允许我们以较小的占用空间和适中的功耗并行操作多个输出。我们还在研究 MIT-LL 制造的一种新型探测器技术,即单电子灵敏读出(以下简称 SiSeRO),虽然它还不能达到单电子噪声性能,但为实现极低噪声、高速 X 射线探测器提供了一条有希望的途径。
当今的卫星。RCA 为海军研究了这个问题,该项目涉及使用通信卫星将电视信号从地面站广播到飞机,然后广播到家庭接收设备。见图 2。表 I 显示了考虑用于此计划的不同卫星的下行链路分析。早期卫星(如 Early Bird 和 Syncom)使用的视频带宽的可用帧速率表明,未来需要更高的帧速率才能提供传统的电视图像。东京奥运会期间展示了通过卫星进行的实时跨太平洋电视,图像质量良好。然而,它需要特殊的接收设备和 85 英尺的碟形天线来提高 Syneom 的低发射功率和天线增益,并使这一壮举成为可能。通过使用飞机进行中继,确定即使使用需要 200°K 接收器噪声温度的非常特殊的接收器,物理限制也会阻止等效天线增益。因此,
当今的卫星。RCA 为海军研究了这个问题,该项目涉及使用通信卫星将电视信号从地面站广播到飞机,然后广播到家庭接收装置。见图 2。表 I 显示了考虑用于此计划的不同卫星的下行链路分析。早期卫星(如 Early Bird 和 Syncom)使用的视频带宽的可用帧速率表明,未来需要更高的帧速率才能提供传统的电视图像。东京奥运会期间展示了通过卫星进行的实时跨太平洋电视,图像质量良好。然而,它需要特殊的接收设备和 85 英尺的碟形天线来提高 Syneom 的低发射功率和天线增益,并使这一壮举成为可能。通过使用飞机进行中继,确定“物理限制将阻止等效天线增益,即使使用需要 200°K 接收器噪声温度的非常特殊的接收器也是如此。因此,
深度传感器(Intel®RealsenseTM)分辨率,帧速率(FPS),视场(FOV):最多480 x 270(16:9) @ @ @最高30 fps; FOV 72 +/- 3°(对角线)
• CMOS:20 μm/像素,1024 x 1024,图像尺寸随帧速率增加而减小 • 混合 CMOS(带像素存储):30 μm/像素,400 x 250,图像尺寸保持不变 q 物镜:2x、5x、10x、20x
本文介绍了一种具有新颖像素结构的自供电异步传感器。像素是自主的,可以独立收集或感应能量。在图像采集过程中,一旦像素感应到其局部照明水平,它们就会切换到收集操作模式。使用所提出的像素架构,大多数发光像素都会为传感器提供早期供电,而低照度像素则会花费更多时间感应其局部照明。因此,等效帧速率高于传统自供电传感器提供的帧速率,后者在独立阶段收集和感应照明。所提出的传感器使用首次尖峰时间读数,允许在图像质量和数据与带宽消耗之间进行权衡。该设备具有动态范围为 80 dB 的 HDR 操作。像素功耗仅为 70 pW。本文详细介绍了传感器和像素的架构。提供并讨论了实验结果。传感器规格与现有技术进行了对比。
YDLIDAR SDM18是由EAI团队开发的高性能单点激光雷(以下称为SDM18)。基于TOF的原理,它配备了相关的光学,电力和算法设计,以实现高精度激光距离测量并输出高帧速率范围的数据。它可用于无人机,机器人障碍物避免和导航等。
在后续测试中,帧速率增加到 100 fps(正常情况下的十倍),以显示推理时间如何根据用于处理流的内核数量而变化。图 2 显示线程数从 2 到 208,推理时间从 0 到 50 毫秒。每个内核配置都会处理 100 fps 的流,其中 32 线程配置的推理时间最短。虽然大多数应用程序不会使用 100 fps,但此测试显示了系统对于具有不同帧速率的各种应用程序的可配置性。