本白皮书对美国常温局部灌注 (NRP) 器官获取实践进行了伦理分析。NRP 是一种在宣告循环死亡后让血液在器官中循环的技术,包括阻断通向大脑的血管以防止脑灌注。作为一种外科手术技术,有证据表明它可以提高器官的利用率和寿命。1 然而,NRP 引起了争议,因为它涉及循环死亡宣告后的再循环,以及对再循环期间潜在脑血流的担忧。2,3 OPTN 伦理委员会(以下简称“委员会”)的职责是向 OPTN 董事会提供伦理分析和指导,以支持美国器官捐赠和移植的可持续性并维护公众信任。委员会通过制定白皮书来实现这一目标,其目标是对复杂问题(通常涉及新实践或不断发展的实践)提供全面的伦理分析。这份伦理分析将为未来制定与该实践相关的政策奠定基础;它本身并不是政策。因此,白皮书中寻求的反馈是为了确保分析的完整性,而不是就所分析的实践达成共识。这份白皮书不是对从事 NRP 实践的临床医生、中心或器官采购组织 (OPO) 的全民公决,也不排除未来在美国合乎道德地实践 NRP。白皮书重点全面探索和规划与 NRP 相关的相关伦理考虑因素以及对 OPTN 和更广泛的移植界产生的影响。委员会根据不伤害、尊重人和效用的伦理原则审查了 NRP,并得出结论:
自 2015 年以来,使用循环死亡 (DCD) 后受控捐献的心脏进行移植的比例稳步上升,短期结果显示其与脑干死亡 (DBD) 后捐献的心脏相当 (1)。胸腹部常温区域灌注 (TA-NRP) 已成为一种有效的策略,可在确认循环死亡后快速恢复灌注并优化胸腹部器官原位质量 (2)。然而,由于围绕 DCD 的伦理考虑、监管政策和法律框架不同,不同国家和机构实施 TA-NRP 的方式也有所不同。主要的伦理问题集中在 TA-NRP 期间血流回脑的可能性 (3)。本文和相关视频展示了 TA-NRP 最常见的三种弓状血管和插管方法,这些方法由美国 (USA)、西班牙和英国 (UK) 的团队采用 (4)。
常温机器灌注 (NMP) 是一种在移植前保存肾脏的新兴方式。NMP 可以实现对肾脏缺血-再灌注损伤 (IRI) 的定向药物调节,而无需全身供体/受体疗法。在小鼠肾脏 IRI 模型中比较了三种已证实的抗 IRI 药物,即 CD47 阻断抗体 (α CD47Ab)、可溶性补体受体 1 (sCR1) 和重组血栓调节蛋白 (rTM)。然后在定制的 NMP 回路中使用最有效的药物来治疗分离的猪肾脏,确定药物对灌注和 IRI 相关参数的影响。α CD47Ab 在 24 小时后对小鼠的 IRI 具有最大的保护作用。因此,α CD47Ab 被选为添加到 NMP 回路的候选药物。通过免疫荧光证实了 CD47 受体结合。与未经治疗的 NMP 肾脏相比,CD47 阻断后肾脏灌注/血流得到改善,氧化应激和组织学损伤相应减少。NMP 期间,α CD47Ab 治疗对肾小管和肾小球功能参数没有显著影响。在小鼠肾脏 IRI 模型中,与针对其他途径的疗法相比,α CD47Ab 被证实是一种更优的抗 IRI 药物。NMP 能够有效地将这种药物直接输送到猪肾脏,尽管需要在移植环境中进一步证明其疗效。
推荐采用市售商品化的DNA提取纯化试剂盒。如使用CTAB法提取DNA所需试剂如下: a) 乙二胺四乙酸二钠(Na 2 EDTA,C 10 H 14 N 2 O 8 Na 2 ·2H 2 O)。 b) 氢氧化钠(NaOH)。 c) EDTA 溶液:ρ(EDTA)=0.02 mol/L:称取5.8448 g EDTA 溶于适量超纯水中,NaOH 固体调节pH 至8.0,定容至1000 mL,121℃灭菌18 min,冷却后常温保存。 d) 三羟甲基氨基甲烷(Tris,C 4 H 11 NO 3 )。 e) 浓盐酸:ρ(HCl)=1.19 g/mL。 f) Tris-HCl 溶液:ρ(Tris-HCl)=0.1 mol/L:称取15.76 g Tris-HCl 溶于适量超纯水中,浓盐酸调pH 至8.0,定容至1000 mL,121℃灭菌18 min,冷却后常温保存。 g) 十六烷基三甲基溴化铵(CTAB)。 h) 氯化钠(NaCl)。 i) CTAB 提取液:称取4 g CTAB 和16.38 g NaCl,分别溶于适量超纯水中,加入0.02 mol/L EDTA 溶 液(5.3 c)8 mL 和0.1 mol/L Tris-HCl 溶液(5.3 f)20 mL,定容至200 mL,121℃灭菌18 min, 冷却后常温保存。 j) Tris 饱和酚(pH=8.0)。 k) 三氯甲烷(CHC l3 )。 l) 异戊醇(C 5 H1 2O )。 m) 酚氯仿:Tris 饱和酚、氯仿和异戊醇按25:24:1 体积比配制。 n) 乙酸铵(CH 3 COONH 4 )。 o) 乙酸铵溶液,ρ(CH3COONH4)=7.5 mol/L:称取5.78 g 乙酸铵溶于10 mL 超纯水中。 p) 乙酸钠(CH 3 COONa·3H 2 O)。 q) 乙酸钠溶液,ρ(CH 3 COONa)=3 mol/L:称取102.06 g 乙酸钠溶于适量超纯水中,冰醋酸调节pH 至5.2,定容至250 mL,121 ℃灭菌18 min; r) 无水乙醇(C 2 H 6 O)。 s) 冰乙酸(C 2 H 4 O 2 )。 t) 蛋白酶K:400 U/mL。 u) 超纯水:经121 ℃,0.1 MPa 灭菌30 min,无细菌无DNA 酶。
2015 年,澳大利亚圣文森特医院集团 (1) 首次报道了从场外采购的循环死亡后受控捐献心脏 (cDCD) 成功进行心脏移植。器官护理系统 (OCS、Transmedics、美国马萨诸塞州) 上的常温灌注用于移植前对供体心脏进行复苏和评估。下一个成功的 cDCD 心脏移植报告来自英国帕普沃思医院,该医院使用心脏常温区域灌注 (NRP) 对 cDCD 心脏进行复苏和评估,然后使用 OCS 进行冷藏或运输 (2)。2022 年,英国 26% 的心脏移植为 cDCD,而在美国,2022 年 cDCD 捐献者仅占所有心脏移植的 8.8% (http:// srtr.transplant.hrsa.gov/annual_reports/Default.aspx)。这无疑是一次浪费的机会。但是为什么呢?阻碍更广泛采用的因素又是什么呢?
背景:利用循环死亡 (DCD) 后捐献的心脏可以扩大供体库。然而,DCD 心脏遭受严重的缺血/再灌注损伤 (IRI)。最近的研究发现,炎症小体中 NLRP3 的激活可能在器官 IRI 中发挥重要作用。Mcc950 是一种新型的炎症小体 NLRP3 抑制剂,可用于治疗多种心血管疾病。因此,我们假设在 DCD 大鼠心脏移植模型中,mcc950 治疗可通过抑制炎症小体中的 NLRP3 来保护常温离体心脏灌注 (EVHP) 保存的 DCD 心脏免受心肌 IRI 的影响。方法:将供心大鼠随机分为四组:对照组;溶剂组;MP-mcc950 组;MP + PO-mcc950 组。 MP-mcc950组和MP+PO-mcc950组将Mcc950加入常温EVHP灌注液中,MP+PO-mcc950组移植心脏后将Mcc950注入左颈外静脉,进行心脏功能评估,检测供心氧化应激、炎症反应、细胞凋亡及炎症小体相关蛋白NLRP3水平。结果:MP-mcc950组和MP+PO-mcc950组移植心脏90 min后,mcc950治疗均显著升高DCD心脏左心室发育压(DP)、dP/dt max、dP/dt min。此外,与对照组相比,在 MP-mcc950 组和 MP + PO-mcc950 组中,将 mcc950 添加到灌注液中并在移植后注射均显着降低了氧化应激、炎症反应、细胞凋亡和炎症小体中的 NLRP3 水平。结论:常温 EVHP 联合 mcc950 治疗可能是一种有前途的新型 DCD 心脏保存策略,可通过抑制炎症小体中的 NLRP3 减轻心肌 IRI。
*4 超热 AO:与室温相比具有极大热动能状态的原子氧 *5 FRP:纤维增强塑料 *6 质子磁力计:质子 利用质子(质子)发射电磁波现象的磁力计频率与磁场大小成正比
Heron 是我们的折扣便利店,主要位于英格兰北部和中部地区的社区内。我们商店的平均面积为 3,000 平方英尺,这意味着大多数商店都被归类为便利店,周日营业时间超过 6 小时。近年来,我们的产品不断改进,包括更多常温产品和新鲜产品,这导致总销售额和大类销售额发生了重大变化。通过更密集地销售传统冷冻食品,为增强产品系列创造了空间,这使我们能够取消冷冻柜,降低运营成本并降低新店的资本成本。通过更密集地销售,我们能够保持冷冻销售量,同时在新的地区增加大量销售。
本通函是对有关铁和有色金属及合金在常温、高温和低温下的强度和相关性能、热膨胀以及热导率和电导率的技术文献进行全面调查的结果的总结。一般来说,数据以表格形式呈现,尽管经常使用图形表示来指示改变成分或条件对性能的影响。包括有关铝、铜、铁和钢、铅、镁、镍、锡、锌、多种杂项金属及其合金的数据。’ 本通函不仅限于传统工程材料,还包含许多通常不被归类为此类材料的性能数据。包括对数据来源的文献参考