目前的研究结果表明,飞行过程中大气湍流造成的干扰效应可以显著减少。一种新方法(也已申请专利)可将升力补偿效应提高 10 倍。先前的模拟和无人驾驶试飞结果表明,与无控制飞行相比,干扰效应可能减少 80%。
提出了一种决策的量子动态模型,并将其与先前建立的马尔可夫模型进行了比较。量子模型和马尔可夫模型都被表述为随机游走决策过程,但这两种方法的概率原理不同。量子动力学描述了复值概率幅度随时间的演变,而马尔可夫模型描述了实值概率随时间的演变。量子动力学会产生干扰效应,而马尔可夫模型则不会产生这种效应。当两条可能路径的并集概率小于每条单独路径的概率时,就会发生干扰效应。推导出量子模型的选择概率和选择响应时间分布,并将预测与马尔可夫模型进行了对比。r 2006 Elsevier Inc. 保留所有权利。
Cichos 解释道:“在我们的实现中,我们使用了尺寸仅为几微米的合成自推进粒子。我们展示了这些粒子可用于计算,同时提出了一种抑制干扰效应(如噪音)对胶体粒子运动影响的方法。”胶体粒子是精细分散在其分散介质(固体、气体或液体)中的粒子。
在第 1 章中,我们看到开放量子系统可以与环境相互作用,并且这种耦合可以将纯态转变为混合态。此过程将对任何量子计算产生不利影响,因为它可以减轻或破坏干扰效应,而干扰效应对于区分量子计算机和传统计算机至关重要。克服这种影响的问题称为退相干问题。从历史上看,克服退相干的问题被认为是构建量子计算机的主要障碍。然而,人们发现,在适当的条件下,退相干问题是可以克服的。实现这一目标的主要思想是通过量子误差校正 (QEC) 理论。在本章中,我们将介绍如何通过 QEC 方法克服退相干问题。值得注意的是,本介绍的范围并不全面,并且仅关注 QEC 的基础知识,而没有参考第 5 章中介绍的容错量子计算的概念。量子误差校正应该被视为这个更大的容错量子计算理论中的一个(主要)工具。
2量子信息理论的初步工具8 2.1折叠。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.1.1干扰效应和量子相干性。。。。。。。。。。。。。。。。。。。。。8 2.1.2哪个路径探测器和腐烂。。。。。。。。。。。。。。。。。。。。。。。10 2.1.3环境诱导的超选择。。。。。。。。。。。。。。。。。。。。。。。。。13 2.1.4摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.2协变量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.2.1投影测量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 2.2.2 POVM。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 2.2.3广义测量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 2.2.4协变量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19
在过去的十年中,在理论上和实验中提出了确认,可以通过旋转纹理(ST-LRT)或由于Spin-Orbit Coupling(Soc-orbit Couplting(Soc-lrrt)(Soc-lrt)(Soc-orbit(Soc-lrtt)),可以在超导/Ferromagnet杂交中产生远距离旋转旋转三个(LRT)超导性。然而,迄今为止,尚无理论或实验研究表明,这两种贡献都可以同时存在于实验系统中。为了解除这些贡献,我们通过研究与MacMillan-Rowell共振相关的上述差异电导异常(CAS),对在连接超导体的铁磁层内发生的超导式准颗粒干扰效应进行了全面研究。在两种类型的外延,v/mgo/fe基于界面旋转式矛盾偶联的两种类型的外延/f/fe基于v/fe/fe的磁场下,已经研究了CAS的偏差依赖性。我们观察到在小的IP和OOP磁场下CA振幅的各向异性,同时仍然受到高铁的影响较弱,并实施微磁模拟,以帮助我们区分ST-LRT和SOC-LRT贡献。我们的发现表明,对电子传输中Fabry-Pérot-type干扰效应的进一步探索可以产生对由自旋轨道耦合和自旋纹理引起的超导体和铁磁体之间杂交的宝贵见解。