没有用于预测干摩擦的摩擦学模型。这项工作提议为建立代表第三体形态的有效数据库奠定基础,以了解是否可以使用机器学习来预测后者的局部摩擦系数。其使用需要构建质量数据库[1]。的确,数据库是机器学习中的关键要素之一,因为它们允许培训人工智能算法,并因此建立模型。考虑到这项研究是开发的。该研究的目的是通过对摩擦界面的定量描述(称为第三尸体)来预测摩擦干燥系数。
摘要:飞机控制面的传统液压伺服机构正逐渐被机电执行器 (EMA) 等新技术所取代。由于 EMA 才刚刚采用,因此无法获得有关其可靠性的现场数据,其故障模式尚未完全了解;因此,有效的预测工具可以帮助检测飞行控制系统的早期故障,以便正确安排维护干预和执行器更换。这将带来双重好处:通过避免飞机在部件受损的情况下飞行,可以提高安全性,并且可以防止更换仍能正常工作的部件,从而降低维护成本。然而,由于受监控系统的复杂性和多学科性质,EMA 预测提出了挑战。我们提出了一种基于模型的故障检测和隔离 (FDI) 方法,采用遗传算法 (GA) 在系统性能开始受到影响之前识别故障前兆。考虑了四种不同的故障模式:干摩擦、间隙、部分线圈短路和控制器增益漂移。本文提出的方法能够以比数据驱动策略更有效的方式利用系统设计知识来应对挑战,并且需要的实验数据更少。为了测试所提出的工具,开发了一个模拟测试台。实施了具有不同详细程度的 EMA 的两个数值模型:高保真模型提供了要分析的故障执行器的数据,而更简单的模型,计算量更小,但足够准确以模拟所考虑的故障模式,由 GA 迭代执行。结果显示,该系统具有良好的稳健性和精确度,能够早期识别系统故障,且误报或漏报很少。
MM-102:工程材料概论工程材料简介、其范围和在工业发展中的作用、工程材料的原材料:其可用性和需求、工程材料基础:原子键、金属晶体结构、聚合物、陶瓷、复合材料和半导体材料简介。金属、聚合物、陶瓷、复合材料和半导体材料的加工、特性和应用。新型工程材料简介,例如形状记忆材料、智能材料、电气、磁性和光学材料。航空航天和运输工业的材料。实验室活动 ME-101:工程力学粒子静力学:平面上的力;牛顿第一定律,自由体图;空间中的力(矩形分量);空间中粒子的平衡。粒子运动学:粒子的直线和曲线运动;速度和加速度的分量;相对于平动框架的运动。粒子动力学:牛顿第二定律;动态平衡;直线和曲线运动;功和能量;粒子的动能;功和能量原理;能量守恒定律;冲量和动量;冲量和动量守恒定律;直接和斜向冲击;角动量守恒定律。刚体:力的等效系统;传递性原理;力的矩;偶;瓦里尼翁定理。三维物体的重心和体积的质心。转动惯量、回转半径、平行轴定理。刚体平衡:自由体图;二维和三维平衡;支撑和连接的反应;二力和三力物体的平衡。刚体运动学:一般平面运动;绝对和相对速度和加速度。刚体的平面运动:力和加速度;能量和动量;线动量和角动量守恒定律。摩擦:干摩擦定律;摩擦角;楔子;方螺纹螺钉;径向和推力轴承;皮带摩擦。结构分析:内力与牛顿第三定律;简单和空间桁架;接头和截面;框架和机器。电缆中的力。PH-122:应用物理学简介:科学符号和有效数字。实验测量中的误差类型。不同系统中的单位。图形技术(对数、半对数和其他非线性图形)矢量:矢量回顾、矢量导数。线和表面积分。标量的梯度。力学:力学的极限。坐标系。恒定加速度下的运动、牛顿定律及其应用。伽利略不变性。匀速圆周运动。摩擦力。