摘要 本文介绍了一种非平衡马赫-曾德干涉仪 (MZI) 固有的干涉特性,该干涉仪通过精密制造技术在绝缘体上硅平台上实现。研究深入探讨了自由光谱范围 (FSR) 与非平衡 MZI 各种长度之间的复杂关系。值得注意的是,模拟结果与实验结果的比较显示出了惊人的一致性。 关键词:马赫-曾德干涉仪、光子学、绝缘体上硅、波导 1. 简介 硅光子器件因其吸引人的特性而越来越受欢迎。小尺寸、大折射率对比度和 CMOS 兼容性是硅光子器件的特性之一,这些特性使其成为电信、生物医学等多个行业的首选器件[1]。马赫-曾德干涉仪 (MZI) 是最广泛使用的硅光子器件组件之一。在硅平台上实现的马赫-曾德尔干涉仪是各种应用的关键元件,从电信(用于光子波导开关和光子调制器)到传感和信号处理 [2]、[3]、[4]。MZI 的实用性源于其干涉特性,这是通过在 MZI 的两个臂之间产生相对相移来实现的。这种相移可以通过使用移相器或使 MZI 的两个臂的光路长度不相等来实现。MZI 的两个臂不相等的 MZI 配置称为不平衡 MZI。在本文中,我们展示了一种不平衡 MZI 设计,我们对其进行了建模、模拟和随后的制造。我们研究了几种不平衡 MZI 设计,并分析了这些设备的模拟和实验传输特性。我们阐明了波导建模的过程,并进行了分析以补偿制造变化,并详细介绍了一些数据分析。 2. 材料与方法 2.1 理论 马赫-曾德干涉仪 (MZI) 包括一个分束器和一个光束组合器,它们通过一对波导相互连接,如图 1 所示。MZI 配置包括分束器将波导输入端 (E i ) 的入射光分成波导的臂或分支。随后,光在输出端重新组合成光束
公司介绍 北京镭测科技有限公司源自清华大学精密测试技术仪器国家重点实验室,是一家提供测量解决方案和拥有自主知识产权的精密激光测量仪器的高科技公司,镭测科技提供双频激光干涉仪、激光反馈干涉仪、相位延迟测量仪、激光教学仪、激光纳米尺等产品,满足机械制造、微电子、光学制造、科研教育等行业的精密测量需求。
摘要:本文报道并实验证明了一种基于微球嵌入法布里-珀罗干涉仪 (FPI) 的高灵敏度、低温度串扰应变传感器。该传感器通过将微球嵌入锥形空芯光纤 (HCF) 中而制成,而光纤的两端由两根标准单模光纤 (SMF) 包围。在 SMF/HCF 界面和微球表面发生的反射导致三光束干涉。通过控制锥形 HCF 的直径和嵌入微球的尺寸可以灵活改变形成的 FPI 的腔长,并且反射光谱的最大消光比 (ER) 大于 11 dB。这种新颖的微球嵌入 FPI 结构显著提高了传统 FPI 在应变测量中的传感性能,可提供 16.2 pm/με 的高应变灵敏度和 1.3 με 的分辨率。此外,还证明了该应变传感器具有0.086 με/ o C的非常低的温度-应变交叉敏感性,大大增强了在精密应变测量领域的应用潜力。
Richard Feynman [1]在他的演讲中,在1981年在MIT上举行的计算物理学的第一次讲话中,观察到,以有效的方式对经典概率计算机进行模拟的一般量子进化似乎是不可能的。 他指出,与自然进化相比,量子进化的任何经典模拟似乎都涉及时间放缓,因为以经典术语描述不断发展的量子状态所需的信息量会呈指数呈指数增长。 但是,Feynman并没有将这一事实视为障碍,而是将其视为机会。 他认为,如果它需要太多的计算才能确定复杂的多粒子间间实验中会发生什么,那么建立这样的实验并测量结果的行为就是进行复杂的计算。 的确,所有量子多部分干涉仪都是量子组合,并且一些有趣的计算问题可能基于估计这些干扰器中的内相移。 这种方法导致了量子算法的统一图,并已由Cleve等人详细讨论。 [2]。 让我们从量子间间的教科书示例开始,即双缝实验,在更现代的版本中,它可以按照手机干涉法进行改写(见图,请参见图。 1)。Richard Feynman [1]在他的演讲中,在1981年在MIT上举行的计算物理学的第一次讲话中,观察到,以有效的方式对经典概率计算机进行模拟的一般量子进化似乎是不可能的。他指出,与自然进化相比,量子进化的任何经典模拟似乎都涉及时间放缓,因为以经典术语描述不断发展的量子状态所需的信息量会呈指数呈指数增长。但是,Feynman并没有将这一事实视为障碍,而是将其视为机会。他认为,如果它需要太多的计算才能确定复杂的多粒子间间实验中会发生什么,那么建立这样的实验并测量结果的行为就是进行复杂的计算。的确,所有量子多部分干涉仪都是量子组合,并且一些有趣的计算问题可能基于估计这些干扰器中的内相移。这种方法导致了量子算法的统一图,并已由Cleve等人详细讨论。[2]。让我们从量子间间的教科书示例开始,即双缝实验,在更现代的版本中,它可以按照手机干涉法进行改写(见图1)。
为了进行补偿,RCU10 单元将编码器提供的正交输入转换为“分辨率单位”计数脉冲和相关方向(上/下线)。随后是数字缩放电路,允许更改有效分辨率,从而将激光波长相关单位转换为更标准的工程单位。(例如,在机床应用中,633 nm 通常转换为 1 µm。)缩放电路之后,注入器装置允许将“分辨率单位”脉冲添加或减去计数脉冲流。通过缩放和“分辨率单位”脉冲注入的组合来实现补偿。将这些校正应用于反馈后,将其转换为数字正交或模拟正弦/余弦并发送到控制系统。整个过程的延迟小于 2 µs。
基于Elitzur-Vaidman炸弹测试仪,请参见:A.C。Elitzur和L. Vaidman,“无量子机械互动测量”。物理基础23,987(1993)。由John Donohue创建的IQC科学外展团队与IQC-OUTREACH@UWATERLOO.CA量子计算机研究所Quantum Computing Institute of Waterloo University of Waterloo of Waterloo 200 University Ave. W. W. W. W. W. Waterloo,N2L3G1版权所有滑铁卢大学。IQC的使命是通过在最高国际层面的跨学科合作来开发和推进量子信息科学技术。 由IQC独特的基础架构启用,世界顶级实验者和理论家在跨越量子计算,通信,传感器和材料的领域中取得了强大的新进步。 IQC屡获殊荣的外展机会促进了学生,老师和社区的科学好奇心和发现。 uwaterloo.ca/institute-for-quantum-computingIQC的使命是通过在最高国际层面的跨学科合作来开发和推进量子信息科学技术。由IQC独特的基础架构启用,世界顶级实验者和理论家在跨越量子计算,通信,传感器和材料的领域中取得了强大的新进步。IQC屡获殊荣的外展机会促进了学生,老师和社区的科学好奇心和发现。 uwaterloo.ca/institute-for-quantum-computingIQC屡获殊荣的外展机会促进了学生,老师和社区的科学好奇心和发现。uwaterloo.ca/institute-for-quantum-computing
从314个Eumetsat通道重新选择了一组新的红外大气发声干涉仪(IASI)通道。在选择通道时,我们使用通道评分指数(CSI)作为元素来计算单独添加的通道对统一模型(UM)数据同化系统的一维变异分析(1D-VAR)的影响,使用通道评分指数(CSI)作为优点。然后,通过计算每个单独的通道CSI贡献来选择200个通道。与大都会官员的UM的操作使用183个通道相比,新套装共享149个频道,而其他51个通道是新的。还检查了使用相同1D-VAR方法从熵还原方法中的选择。结果表明,可以使用拟议的CSI方法以更客观的方式进行通道选择。这是因为可以在整个IASI观察光谱中选择最重要的通道。在使用UM全球同化系统进行实验试验中,与操作渠道的结果相比,新渠道在改善预测方面具有总体中性影响。然而,在对照频道运行中显示的上流层潮湿偏见在实验试验中与新选择的通道大大减少了。潮湿偏见的降低主要是由于其他水蒸气通道,这些通道对对流层水蒸气敏感。
在量子计算中,我们试图利用量子力学的非凡行为来构建量子算法,以更高效的方式解决问题,例如使用更少的内存或执行更少的操作。要理解量子算法的内部工作原理,需要更深入地了解量子力学的数学原理。幸运的是,我们可以使用 Mach-Zehnder 干涉仪来体验一下。在此活动中,您将研究如何使用单粒子 Mach-Zehnder 干涉仪比最佳的经典算法更有效地解决简单问题。Deutsch-Josza 量子算法虽然实际用途很少,但它是最早也是最简单的量子算法之一,展示了利用量子力学进行计算的强大功能。它解决了以下问题:
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。