回想一下位移算符如何变换光子振幅算符,ˆ D ( α )ˆ a † ˆ D † = ˆ a † − α ∗ ,状态可以写成位移和创造的连续
我们在实验上证明了一个多模干涉仪,其中包含一个被困在谐波电势中的39 K原子的玻色子凝结物,在该原子间相互作用中可以取消利用Feshbach的共振。kapitza-dirac从光学晶格中的衍射将BEC一致地分配在多个动量成分中,同样间隔,形成了不同的干涉路径,而轨迹被捕获的har-nonig势封闭。我们研究了两种不同的干涉方案,其中重组脉冲是在确定电位的全部或一半振荡后应用的。我们发现,干涉仪输出处动量成分的相对幅度通过诱导的谐波电位相对于光学晶格的诱导位移对外力敏感。我们展示了如何校准干涉仪,充分表征其输出并讨论透视改进。
中位随访16年后的结果,有272名患者患有CVD。仅与兰花切除术相结合,顺铂联合化疗与CVD风险增加(危险比[HR],1.9; 95%CI,1.1至3.1)。患者在诊断时肥胖或吸烟者(HR,4.6; 95%CI,2.0至10.0和HR,分别为1.7; 95%CI,1.1至2.4),开发了Raynaud的现象(HR,1.9; 95%CI,1.1至3.6)或dyslipidemia(1.1至3.6)或dyslipidemia(H. 95%ci; 95%ci o; 95%; 1.95%; 95%; 95%; 95%; 1. 1. 8%; 1.1.8; 95%; CVD(HR,2.9; 95%CI,1.7至4.9)的CVD风险更高。与未发展CVD的幸存者相比,具有CVD的TC幸存者在物理领域上报告了质量较低。接受了心血管危险因素的临床评估(评估年龄中位数:51岁),有86%的人患有血脂异常,有50%的人患有高血压,而35%的人患有代谢合伙,无论治疗均无关。
KMT5B的机制和人类神经发育的机制。 Sheppard,S.E。 ; Brying,L。; Wickramascaker,R.N。 ;疫苗接种,c。罗伯茨,b。简,J。; Hulen,J。;沃森(C.J.) ; Faunds,V。; duffourd,y。 Lee,P。;西蒙,M.C。 ; Cruz,X。 N。Patilla;弗洛雷斯·梅德(Flores-Mend); Akizu,n。;微笑,J。;来自R. Silva的Pellemino;仪式。;月,米;玫瑰,a。; Barcelo-Serts,i。 Choa,Z.X。 ; Lim,C.Y。 ;杜布格,c。日记,H。; Demurger,f。; Mulhern,M。;阿克曼,c。 Lippa,n。;安德鲁斯(M。); Baldridge,D。君士坦丁,J。;毛发,A。Van; Snoeck-streef,i。 Chow,P。; Hing,A。; J.M. Graham Jr ; au,m。; Faivre,L。; Shen,W。;毛。 J。Palubos; Viscope,d。; Gahl,W。; tifft,c。; Mamamara,E。; Hauser,n。; Miller,R。; Maffeo,J。; Afenjar,A。; Doummar,d。; Keren,b。 Arn,P。; Macklin-Mania,S。;消息,i。 Callewaert,b。对,a。; Zweier,c。; Brewer,C。; Saggar,A。; Smeland,M.F。 ;库马尔,阿吉斯; Elmslie,F。; Deshpand,c。很好,m。 Cogne,b。 Ierland,Y。Van;威尔克(M。); Slegtenst,M。Van;海岸Chhen,J.Y。 ;干燥,d。码头,d。 Wormanmann,S.B。 ; Kamstean,E.J。 ; Coch,J。; Haynes,d。;污染,L。; Tither,H。; Ranguin,K。; Pitch-Man,A.S。;韦伯,葬礼的佩雷斯,a。 Sanchez del Pozo,J。; J.M. Rosals ; Jose,P。;标准,K。;劳赫(Rauch) Mei,D。;玛丽,f。; Guerrini,r。 Lesin,J。; Tran Mau-Them,f。;菲利普,c。 Dauriat,b。雷蒙德(L. Raymond); Moutton,S。; Quiet-Gonzal,A.M。;火灾,T.Y。 ;朋友,c。格罗托(Grotto)肾脏,f。; Drive,T.G。 ;伊斯兰教。 Sidlik,J.A。 ;亨德森(L.B.)KMT5B的机制和人类神经发育的机制。Sheppard,S.E。 ; Brying,L。; Wickramascaker,R.N。 ;疫苗接种,c。罗伯茨,b。简,J。; Hulen,J。;沃森(C.J.) ; Faunds,V。; duffourd,y。 Lee,P。;西蒙,M.C。 ; Cruz,X。 N。Patilla;弗洛雷斯·梅德(Flores-Mend); Akizu,n。;微笑,J。;来自R. Silva的Pellemino;仪式。;月,米;玫瑰,a。; Barcelo-Serts,i。 Choa,Z.X。 ; Lim,C.Y。 ;杜布格,c。日记,H。; Demurger,f。; Mulhern,M。;阿克曼,c。 Lippa,n。;安德鲁斯(M。); Baldridge,D。君士坦丁,J。;毛发,A。Van; Snoeck-streef,i。 Chow,P。; Hing,A。; J.M. Graham Jr ; au,m。; Faivre,L。; Shen,W。;毛。 J。Palubos; Viscope,d。; Gahl,W。; tifft,c。; Mamamara,E。; Hauser,n。; Miller,R。; Maffeo,J。; Afenjar,A。; Doummar,d。; Keren,b。 Arn,P。; Macklin-Mania,S。;消息,i。 Callewaert,b。对,a。; Zweier,c。; Brewer,C。; Saggar,A。; Smeland,M.F。 ;库马尔,阿吉斯; Elmslie,F。; Deshpand,c。很好,m。 Cogne,b。 Ierland,Y。Van;威尔克(M。); Slegtenst,M。Van;海岸Chhen,J.Y。 ;干燥,d。码头,d。 Wormanmann,S.B。 ; Kamstean,E.J。 ; Coch,J。; Haynes,d。;污染,L。; Tither,H。; Ranguin,K。; Pitch-Man,A.S。;韦伯,葬礼的佩雷斯,a。 Sanchez del Pozo,J。; J.M. Rosals ; Jose,P。;标准,K。;劳赫(Rauch) Mei,D。;玛丽,f。; Guerrini,r。 Lesin,J。; Tran Mau-Them,f。;菲利普,c。 Dauriat,b。雷蒙德(L. Raymond); Moutton,S。; Quiet-Gonzal,A.M。;火灾,T.Y。 ;朋友,c。格罗托(Grotto)肾脏,f。; Drive,T.G。 ;伊斯兰教。 Sidlik,J.A。 ;亨德森(L.B.)Sheppard,S.E。; Brying,L。; Wickramascaker,R.N。;疫苗接种,c。罗伯茨,b。简,J。; Hulen,J。;沃森(C.J.); Faunds,V。; duffourd,y。 Lee,P。;西蒙,M.C。; Cruz,X。 N。Patilla;弗洛雷斯·梅德(Flores-Mend); Akizu,n。;微笑,J。;来自R. Silva的Pellemino;仪式。;月,米;玫瑰,a。; Barcelo-Serts,i。 Choa,Z.X。; Lim,C.Y。;杜布格,c。日记,H。; Demurger,f。; Mulhern,M。;阿克曼,c。 Lippa,n。;安德鲁斯(M。); Baldridge,D。君士坦丁,J。;毛发,A。Van; Snoeck-streef,i。 Chow,P。; Hing,A。; J.M. Graham Jr; au,m。; Faivre,L。; Shen,W。;毛。 J。Palubos; Viscope,d。; Gahl,W。; tifft,c。; Mamamara,E。; Hauser,n。; Miller,R。; Maffeo,J。; Afenjar,A。; Doummar,d。; Keren,b。 Arn,P。; Macklin-Mania,S。;消息,i。 Callewaert,b。对,a。; Zweier,c。; Brewer,C。; Saggar,A。; Smeland,M.F。;库马尔,阿吉斯; Elmslie,F。; Deshpand,c。很好,m。 Cogne,b。 Ierland,Y。Van;威尔克(M。); Slegtenst,M。Van;海岸Chhen,J.Y。;干燥,d。码头,d。 Wormanmann,S.B。; Kamstean,E.J。; Coch,J。; Haynes,d。;污染,L。; Tither,H。; Ranguin,K。; Pitch-Man,A.S。;韦伯,葬礼的佩雷斯,a。 Sanchez del Pozo,J。; J.M. Rosals; Jose,P。;标准,K。;劳赫(Rauch) Mei,D。;玛丽,f。; Guerrini,r。 Lesin,J。; Tran Mau-Them,f。;菲利普,c。 Dauriat,b。雷蒙德(L. Raymond); Moutton,S。; Quiet-Gonzal,A.M。;火灾,T.Y。;朋友,c。格罗托(Grotto)肾脏,f。; Drive,T.G。;伊斯兰教。 Sidlik,J.A。;亨德森(L.B.); Hennessy,L。; Raper,A。;父母,我。 Caiser,F.J。;有时,一个。布克,Ø.L。; Juusola,J。;人,r。 Schnur,R.E。; Vitobello,A。;银行; Bhoj,E.J。; Stepman,H.A.F。2023,文章 /编辑(Adventure Science,9,10,(2023),pp。EADE1463,第1463条)
E-ELT 欧洲极大望远镜 EFT 有效场论 EM 电磁 EMRI 极端质量比螺旋 EoS 状态方程 ET 爱因斯坦望远镜 EWPT 电弱相变 FLRW 弗里德曼-勒梅特-罗伯逊-沃克 FOPT 一级相变 GB 银河双星 GW 引力波 GR 广义相对论 IMBBH 中等质量双黑洞 IMS 干涉计量系统 IR 红外线 KAGRA 神冈引力波探测器 KiDS 千度巡天 K CDM 宇宙常数加冷暗物质 LIGO 激光干涉引力波天文台 LISA 激光干涉仪空间天线 LSS 大尺度结构 MBBH 大质量双黑洞 MBH 大质量黑洞 MCMC 马尔可夫链 蒙特卡罗 MHD 磁流体动力学 NG 南部后藤 PBH 原始黑洞 PISN对不稳定超新星 PLS 幂律敏感性 ppE 参数化后爱因斯坦 PTA 脉冲星计时阵列 RD 辐射主导 QCD 量子色动力学 SGWB 随机引力波背景 SKA 平方公里阵列 SM 粒子物理标准模型 SNR 信噪比 SOBH 恒星起源黑洞 SOBBH 恒星起源双黑洞 TDI 时域干涉测量 UV 紫外
基于Elitzur-Vaidman炸弹测试仪,请参见:A.C。Elitzur和L. Vaidman,“无量子机械互动测量”。物理基础23,987(1993)。由John Donohue创建的IQC科学外展团队与IQC-OUTREACH@UWATERLOO.CA量子计算机研究所Quantum Computing Institute of Waterloo University of Waterloo of Waterloo 200 University Ave. W. W. W. W. W. Waterloo,N2L3G1版权所有滑铁卢大学。IQC的使命是通过在最高国际层面的跨学科合作来开发和推进量子信息科学技术。 由IQC独特的基础架构启用,世界顶级实验者和理论家在跨越量子计算,通信,传感器和材料的领域中取得了强大的新进步。 IQC屡获殊荣的外展机会促进了学生,老师和社区的科学好奇心和发现。 uwaterloo.ca/institute-for-quantum-computingIQC的使命是通过在最高国际层面的跨学科合作来开发和推进量子信息科学技术。由IQC独特的基础架构启用,世界顶级实验者和理论家在跨越量子计算,通信,传感器和材料的领域中取得了强大的新进步。IQC屡获殊荣的外展机会促进了学生,老师和社区的科学好奇心和发现。 uwaterloo.ca/institute-for-quantum-computingIQC屡获殊荣的外展机会促进了学生,老师和社区的科学好奇心和发现。uwaterloo.ca/institute-for-quantum-computing
来自有或没有错过横向动量(E MISS T)的各种搜索的广泛搜索结果,用于限制一个两higgs-doublet模型(2HDM),并介导了普通和暗物质和暗物质(2HDM+ a)之间的相互作用,并介导相互作用。在2015 - 2018年期间,在大型强子对撞机的Atlas检测器记录的质子 - 质子碰撞数据中,质子 - 普罗顿碰撞数据的分析最多可消耗139 fb 1。三个最敏感搜索的结果是统计上的。这些搜索目标特征是带有巨大的t和lepton腐烂的Z玻孔;大小姐T和Higgs玻色子腐烂到底部的夸克;并分别在最终的夸克和底部夸克的最终状态下产生带电的希格斯玻色子。的约束是针对2HDM+ a中几个常见和新基准的场景得出的。2024科学中国出版社。由Elsevier B.V.和Science China Press出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要:由于它们的非接触式和快速测量功能,激光干涉仪代表了表面验证仪的触觉手写笔仪器的有趣替代方法。除了这些出色的属性外,收购成本在行业中起着重要作用,限制了光学辅助仪的频繁使用,而光学仪比触觉修理仪昂贵得多。我们提出一个低成本激光测量干涉仪,其轴向重复性以低于1 nm的速度,以每秒38,000高的高度值。传感器的性能已在几个表面标准上进行了验证,可达到高达160 mm/s的横向扫描速度。进一步到高扫描速度,高采集率通过平均测量高度值来提高测量精度。例如,可以将625 pm的标准偏差用于重复测量值,以牺牲数据速率为代价。但是,传感器概念为进一步提高数据速率和测量可重复性提供了潜力。
超薄暗物质(ULDM)是领先的良好动机候选者之一,在粒子物理学和宇宙学标准模型之外,许多理论中都预测了这些候选。在物理和天文实验中搜索ULDM的兴趣越来越多,主要假设ULDM和正常物质之间还有其他相互作用。在这里我们证明,即使ULDM仅具有重力相互作用,它也应引起太阳系中的引力扰动,该引力扰动可能足够大,可以在未来的重力波(GW)激光干涉仪中引起可检测的信号。我们研究了米歇尔森时间 - 时间延迟干涉仪对各种自旋的ULDM的敏感性,并通过针对μHz频率的空间基GW检测器来探测具有质量m mass10-18 eV的向量ULDM。我们的发现表明,GW检测器可能会直接探测一些质量范围,否则否则挑战了。
德国航空航天中心 (DLR) Albert Roura 量子技术研究所,Söflinger Straße 100, 89077 Ulm,德国和量子物理研究所,