特殊量子态用于计量学,以实现低于经典行为状态 1,2 所确定的极限的灵敏度。在玻色子干涉仪中,压缩态 3、数态 4,5 和“薛定谔猫”态 5 已在各种平台上实现,并且与使用相干态的干涉仪相比,其测量精度更高 6,7 。另一种在计量学上有用的状态是两个具有最大能量差异的本征态的相等叠加;理想情况下,这种状态可以达到量子力学所允许的最大干涉灵敏度 8,9 。这里我们展示了在谐振子的情况下这些量子态的增强灵敏度。我们扩展了现有的实验技术 10,以创建高达 n = 100 的阶数状态,并在单个捕获离子的运动中生成谐振子基态和形式为 ∣ ⟩ ∣ ⟩ + n ( 0 ) 1 2 的数态的叠加,其中 n 高达 18。虽然实验不完善使我们无法达到理想的海森堡极限,但我们观察到对机械振荡器频率变化的灵敏度增强。这种灵敏度最初随 n 线性增加,在 n = 12 时达到最大值,与具有相同平均占据数的相干态的理想测量相比,我们观察到计量增强了 6.4(4) 分贝(不确定度是平均值的一个标准差)。这样的测量应该提供改进的特性
1。引言硅光子设备由于其吸引人的特性而变得越来越流行。小尺寸,较大的折射率对比度和CMOS兼容性是硅光子设备的特性,它们使其成为多个行业的选择设备 - 电信,生物医学等[1,2]。使用最广泛的硅光子设备组件之一是Mach-Zehnder干涉仪(MZI)。在硅平台上实施的Mach-Zehnder干涉仪是各种应用的关键元素,从电信(用于光子波导开关和光子调制器)到感应,神经网络,量子和信号处理的关键元素[3-11]。MZI的效用源于其干涉特性,这是通过在MZI的两个臂之间创建相对相移来实现的。使用相位变速器或通过使MZI的两个臂的光路长度不平等来实现此相移。MZI配置,其中MZI的两个臂都不相等,称为MZI不平衡。不平衡的MZI已用于位移传感[12],气体传感[13],模式切换[14]和调制[15]。在本文中,我们展示了我们建模,模拟和随后制造的MZI设计不平衡的设计。我们检查了几种不平衡的MZI设计,并分析了设备的仿真和实验传输特性。我们阐明了波导建模的过程并进行了分析,以补偿制造变化并详细介绍了一些数据分析。
构建一种理论,即统一量子力学(QM)和一般相对论(GR)一直是一项近一个世纪的努力,一直持续到今天。即使在理论量子重力方面取得了长足的进步,我们仍然没有完整的解决方案。也许是由于这项努力的巨大困难,因此早期实现了体验物理学在量子重力领域中起着的关键作用,这是早期实现的,这是对重力波(GWS)在2015年提高引力波(GWS)的首次观察的作用[1-4]。在2016年GW发现论文之前,量子重力实验探针的建议包括γ射线爆发[5],米歇尔森实验室量表的干涉仪[6],超高的能量宇宙射线和界面[7] [7] 9],重力耦合G [10,11],量子与重力散射[12,13],分子干涉测定法[14],洛伦兹违反了签名和约束[15],以及许多其他[16] [16] [16],两种模型依赖于模型的空间(例如,弦量量子量)(例如,弦量量子量)(例如,独立的量子)。从2016年开始,在越来越多的新(或更新)的实验溶液(包括干涉仪)中,可以检测到GW的较弱领域中可能弱的信号。实际上,尽管GR正确地解释了所有当前的GW观察结果[17-19]和重力测试[20],但仍然有可能
发射器 Clavis3-A (ALICE) 包含一个激光器,可发射 CW 光束。随后对光束进行调制,以提供相干光脉冲,其位模式对应于零和一。然后,脉冲被衰减以达到单光子水平。这些脉冲从发射器 Clavis3-A 通过量子信道传输到接收器 Clavis3-B,在那里被检测到。在接收器中,一些脉冲到达检测器 D bit ,在那里生成密钥,一些脉冲穿过监控干涉仪并到达检测器 D mon 。它们用于监控窃听。
纳米流体干涉仪 (Mittal Enterprises-NF10) • 纳米流体(如银/金和磁流体等)的表征。 • 评估流体中适度的纳米颗粒浓度以显著增强其性能。 • 预测由于金属纳米颗粒以极低浓度悬浮在聚合物流体中而导致的热导率增强。 • 液体悬浮液中纳米颗粒的声速和压缩性。 • 研究相变并检测/评估纳米流体中的弱和强分子相互作用。 • 确定复合程度并计算此类纳米流体复合物的稳定常数。
ore 10,Aula dottorato摘要:Niobate锂是用于量子和经典应用集成光学的领先材料。由于其非线性,它支持用于量子状态生成和操纵的电光设备的制造。使用此材料平台,我将展示我们的实验结果,以产生芯片上的挤压真空状态,在芯片上的多个组件的整合以及可重构的波导阵列。这些设备的整体性质意味着可以在不稳定的干涉仪中稳定实现正确的阶段,从而大大简化了实现复杂的光子量子电路的任务。
1 DIATI,都灵理工大学,意大利都灵,10124 Corso Duca degli Abruzzi,24 Torino – {mariaangela.musci、irene.aicardi、paolo.dabove、andrea.lingua}@polito.it 2 PIC4SeR,都灵理工大学服务机器人跨部门中心,意大利都灵委员会 I,WG IX/9 关键词:相机校准、高光谱帧相机、法布里-珀罗干涉仪、摄影测量。摘要:高分辨率遥感和摄影测量的主要工具之一是轻量级高光谱帧相机,它用于精准农业、林业和环境监测等多个应用领域。在这些类型的传感器中,Rikola(基于法布里-珀罗干涉仪 (FPI),由 Senop 生产)是最新创新之一。由于其内部几何形状,需要解决几个问题才能正确定义和估计内部方向参数 (IOP)。主要问题涉及每次更改波段序列的可能性以及评估 IOP 的可靠性。这项工作重点关注对每个传感器的 IOP 定义的评估,考虑环境条件(例如,不同的时间、曝光、亮度)和 FPI 相机的不同配置的影响,以便重建一个未失真的超立方体以进行图像处理和物体估计。这项研究的目的是了解 IOP 是否随时间保持稳定,以及在考虑从地面到空中应用的不同环境配置和调查的情况下,哪些波段可以作为每个传感器内部参数计算的参考。初步进行的测试表明,不同实验波段之间的焦距百分比变化约为 1%。
RE:Carderock 联系人。建筑计划之间存在差异,制造商有非常具体的详细技术,例如超声波 NDE 技术,而现场检查则相对随意。在与 Gene Campneschi 交谈时,试图找出是否存在可允许的缺陷尺寸,他说这是非常结构特定的;基本上,当我们处于有限元分析级别时,标准做法是进行缺陷关键性分析研究,从而将不同的缺陷引入模型以确定最大允许尺寸。我尝试在我的表格中指定可允许的缺陷。RE:Bruce Bandos 是一位 3 级超声波 NDE 从业者,我有在费城合作的经验。Bruce 告诉我,Northrop Grummon 公司内部进行所有 NDE,在他看来,该公司拥有国内最先进的海洋复合材料 NDE 设备。我已经给他们的 NDE 联系人发了电子邮件,但不太可能收到回复。我计划拜访 Bruce Bandos,因为他有超声波、热成像和激光剪切干涉仪设备。剪切干涉仪由材料科学公司 (MSC) 开发,我也打算拜访这家公司。回复:计划测试。第一个测试是目测的。咨询了测量员和从业人员后,最实际使用的方法是目测,在演示中将进一步讨论目测的重要性。回复:设备制造商 我了解需要联系的制造商,但我认为进行一些初步工作以确定设备需要检测的缺陷大小很重要。
引入了波颗粒二元性的概念,de Broglie提出了1923年最令人困惑的量子物理学概念之一[1]。后来,Bohr [2]将此违反直觉特征推广为互补原理。根据互补原则,量子对象具有相同真实但相互排斥的物理特性[2]。为了说明,考虑到干涉仪的设置,量子系统中包含的所有信息均由系统的波和粒度范围捕获。但是,测量其中一种特性禁止观察到另一个特性[2]。可以通过检查受干涉仪的单个光子来理解此设置。在这样的学科中,光的粒子性质是由我们对光子路径的知识所捕获的[3,4]。相比之下,光的波性质取决于屏幕上干涉模式的可见性[3,4]。互补原则的概念自从引入以来一直是激烈辩论的主题[3,5];然而,直到1979年,它才被数学量化,当时Wootters和Zurek定量制定了量子系统的波和粒子特征[6]。此量化后来表示为显式不等式p 2 + v 2⩽1[7],其中p代表量子粒子的路径信息(先前的路径可预测性),V代表了干扰模式,可见性,解决了光的波动行为[8-12]。从那时起,对量子二元性的各个方面都有很大的兴趣[13-18]。考虑到年轻的双缝实验中的波颗粒二元性,Scully和Drühl意识到了一个深刻的新颖特征,可以通过删除删除哪个路径信息来恢复干扰模式[19];
通过激光波长校准和霓虹灯灯泡光谱校准完成干涉仪的校准。内部校准目标(ICT)由一个高度发射的,深腔的黑体组成,它利用经过飞行的高级基线成像仪(ABI)遗产设计组成。ICT的温度知识大于140 millikelvin。包括一个被动振动隔离系统,以允许在50毫克环境中进行仪器操作。仪器光学元件与结构和仪器电子设备都热脱钩。整体仪器设计是模块化的,它允许平行组装和快速仪器集成。