韩国陶瓷工程与技术研究所,金朱52851,大韩民国B能源工程系,汉阳大学,222 WANGSIMNI-RO,SEONGDONG,SEOLN-GU,SEOUL 04763,SEOUL 04763,韩国能源与化学工程共和国共和国共和国,ULSAN 449919191919191919. 16499年,大韩民国e工业化学系,普金国立大学,45 Yongso-ro,NAM-GU,Busan 48513,大韩民国第48513号,Pusan National University,Busan University,Busan 46241,46241,韩国韩国Griorea Inspector office and kyungpook National University,Kyungpook National University,Daegu 46241 Gachon University,Seongnam-Si,Gyonggi-Do 13120,大韩民国韩国陶瓷工程与技术研究所,金朱52851,大韩民国B能源工程系,汉阳大学,222 WANGSIMNI-RO,SEONGDONG,SEOLN-GU,SEOUL 04763,SEOUL 04763,韩国能源与化学工程共和国共和国共和国,ULSAN 449919191919191919. 16499年,大韩民国e工业化学系,普金国立大学,45 Yongso-ro,NAM-GU,Busan 48513,大韩民国第48513号,Pusan National University,Busan University,Busan 46241,46241,韩国韩国Griorea Inspector office and kyungpook National University,Kyungpook National University,Daegu 46241 Gachon University,Seongnam-Si,Gyonggi-Do 13120,大韩民国
在20多年来已证明了等离子体源对热敏设备进行净化的效率,但是基于商业等离子体的灭菌器仍然具有狭窄的应用。这可以通过困难来部分解释,以确定可靠的生物指示剂和工业用途所需的标准化微生物测试程序。在本文中,我们研究了环境因素对沉积在表面上并通过血浆来源处理的微生物的灭活率的影响。此外,我们提出了文献综述,表明与常规的低温灭菌器相比,几种分离中和余辉等离子灭菌器提供的治疗时间较短,以减少内生孢子在受污染的表面上的浓度通过6 log。最后,我们为未来的等离子体净化标准提出了一些建议。
抽象牧场在碳(C)隔离和全球C平衡中起着至关重要的作用。部分根区干燥(PRD)众所周知,可以减少水消耗,对该田间苜蓿生产率产生最小的影响。使用2年的现场实验来研究PRD对苜蓿土壤植物系统中C保留的影响。该田间实验包括分开图设计中的两个因素(灌溉模式和灌溉量)。两种灌溉模式是PRD和常规的沟冲洗,四个灌溉水平为70%,85%,100%和115%的苜蓿潜在蒸发。这项研究表明,由于苜蓿根中C较高的C,PRD增加了苜蓿植物中的C。PRD导致了较高的土壤有机C储存,而它导致了较低的土壤总C和土壤无机C储存。PRD可降低苜蓿土壤植物系统中的C保留率。这项研究的发现显示了PRD在多年生作物的土壤植物系统中影响c保留的模式,这意味着PRD降低了苜蓿牧场的c固存潜力。
摘要 本文介绍了用人工智能系统控制的热风和红外线干燥穿心莲的开发。研究中使用的工具是人工智能系统控制的热风和红外线穿心莲干燥柜。该部件由一个宽度为 1204 毫米、长度为 380 毫米的烤箱组成。65 瓦的鼓风机用于吹风,使热量均匀地进入干燥器。热释放源使用加热线圈、翅片加热器/翅片加热器。电压大小 220 V,1000 W;长度 450 毫米;金属编织尺寸 11 毫米;翅片尺寸 31 毫米。用热电偶检查热量,并与设定温度进行比较。如果穿心莲干燥机内的温度没有下降,热像仪将打开通风风扇将热量带出室外。并命令降低加热器的温度。测量的温度数据将保存到 Raspberry Pi 服务器。研究发现,该机器能够根据机器的操作条件干燥穿心莲。并且能够按照干燥规定值在40°C的温度下干燥穿心莲。干燥前湿度为100%,干燥后湿度为0.73%。干燥前重量为30克,干燥后重量为8.1克。干燥速率为1.37,平均温度为60°C,符合干燥规定值。干燥前水分为100%,干燥后水分为0.79%。干燥前重量为60克,干燥后重量为12.6克。干燥速率为1.27。该系统还使用功率为1kW的低热源。电压为220 V。
干燥:在干燥部,纸张在直径较大的加热圆筒内移动,其余水分通过蒸发除去。干燥织物使纸张在整个干燥部内与圆筒紧密接触。干燥织物由单丝制成,必须耐热、坚固,并且设计用于提高干燥效率和运行性能。干燥织物的使用寿命比成型和压制织物长得多——从 6 个月到 18 个月。Albany International 在干燥产品的设计和应用方面处于行业领先地位,包括针缝、主动空气处理和耐热织物。
结果:基于GWAS数据,发现14个枢纽共同易感基因(HLA-DRB1、HLA-DRA、STAT3、JAK1、HLA-B、HLA-DQA1、HLA-DQA2、HLA-DQB1、HLA-DRB5、HLA-DPA1、HLA-DPB1、TYK2、IL2RA、MAPK1),8种药物靶向2个或2个以上的基因,28条共同易感通路,15种药物靶向3个或3个以上的通路。基于转录组数据,发现3个枢纽共同DEG(STAT1、GATA3、PIK3CA)与3种药物,10条共同风险通路与435种药物。“JAK-STAT信号通路”同时被纳入共同易感通路和共同风险通路。 GWAS 数据和转录组数据中的药物有 133 个重叠,包括 JAK-STAT 抑制剂。此外,我们发现 IL2RA 和 HLA-DRB1 被确定为中心常见易感基因,是用于治疗 MS 的达克珠单抗和格拉替雷的靶点,这表明达克珠单抗和格拉替雷可能对 SS 有治疗作用。
在这项研究中,使用了极端梯度提升(XGBoost)和光梯度提升(LightGBM)al-gorithms用间接太阳能干燥机的香蕉切片的干燥特性进行模型。建立了自变量(温度,水分,产品类型,水流量和产品质量)与因变量(能源消耗和降低)之间的关系。用于耗能,XGBoost在训练过程中以0.9957的r 2为0.9957,在测试过程中表现出优异的表现,在训练期间的最小MSE为0.0034,在训练期间为0.0008,在测试阶段表明高预测性获得率和低错误率。相反,LGBM显示较低的R 2值(0.9061训练,0.8809测试)和较高的MSE在训练过程中的MSE为0.0747,在测试过程中0.0337显示了0.0337,反映了较差的表现。同样,对于收缩预测,XGBOOST优于LGBM,较高的R 2(0.9887训练,0.9975测试)和较低的MSE(0.2527培训,0.4878测试)证明了LGBM。统计数据表明,XGBoost定期胜过LightGBM。基于游戏理论的Shapley功能表明,温度和产品类型是能源消耗模型的最具影响力的特征。这些发现说明了XGBoost和LightGBM模型在食品干燥操作中的实际适用性,以优化干燥调节,提高产品质量并降低能耗。
1988 年,Contec 率先推出预饱和湿巾,用于半导体洁净室,以提高便利性并减少溶剂使用量和挥发性有机化合物 (VOC) 排放。1990 年,无菌预饱和酒精湿巾被引入制药行业,用户报告称酒精使用量减少了 15% 至 50%。1 从那时起,药房无菌配制标准不断发展。现在,主要工程控制 (PEC) 使用 EPA 注册的一步式消毒清洁剂进行清洁和消毒,之后使用无菌 IPA (sIPA) 擦拭这些装置的内表面,以在配制前清除 ISO 5 级空间中的任何清洁剂残留物。
在食品加工环境中使用的材料上可以建立由背景微生物群和单核细胞增生李斯特菌组成的微生物多物种群落。这些微生物多物种群落中菌株的存在、丰度和多样性可能受到相互作用和对常规清洁和消毒 (C & D) 程序的抵抗力差异的影响。因此,本研究旨在表征在没有和存在多种背景微生物群 (n = 18) 的情况下,单核细胞增生李斯特菌菌株混合物 (n = 6) 在聚氯乙烯 (PVC) 和不锈钢 (SS) 上形成生物膜过程中的生长和多样性。从蘑菇加工环境中分离出单核细胞增生李斯特菌和背景微生物菌株,并在模拟蘑菇加工环境条件下进行实验,使用蘑菇提取物作为生长培养基,以环境温度 (20 ◦ C) 作为培养温度。在单一物种生物膜培养期间施用的单核细胞增生李斯特菌菌株在 PVC 和 SS 试样上均形成生物膜,并使用氯化碱性清洁剂和基于过氧乙酸和过氧化氢的消毒剂进行四轮 C & D 处理。每次 C & D 处理后,在总共 8 天的培养期内将试样重新培养两天,C & D 可有效去除 SS 上的生物膜(减少量为 4.5 log CFU/cm 2 或更少,导致每次 C & D 处理后计数都低于检测限 1.5 log CFU/cm 2 ),而对 PVC 上形成的生物膜进行 C & D 处理产生的减少量有限(减少量在 1.2 到 2.4 log CFU/cm 2 之间,分别相当于减少量 93.7 % 和 99.6 %)。在多物种生物膜培养过程中,将单核细胞增生李斯特菌菌株与微生物群一起培养,48 小时后,单核细胞增生李斯特菌在生物膜中形成,因此 SS 和 PVC 上的多物种生物膜中单核细胞增生李斯特菌菌株多样性较高。C & D 处理可从 SS 上的多物种生物膜群落中去除单核细胞增生李斯特菌(减少 3.5 log CFU/cm 2 或更少,导致每次 C & D 处理后计数低于 1.5 log CFU/cm 2 的检测限),在不同的 C & D 周期中,微生物群落物种的优势有所不同。然而,与单一物种生物膜相比,PVC 上多物种生物膜的 C & D 处理导致李斯特菌的减少量较低(介于 0.2 和 2.4 log CFU/cm 2 之间),随后李斯特菌重新生长,肠杆菌科和假单胞菌稳定占主导地位。此外,在没有和存在浮游背景微生物群培养物的情况下,李斯特菌的浮游培养物沉积在干燥表面上并干燥。与 PVC 相比,SS 上观察到的干燥细胞计数随时间的下降速度更快。然而,C & D 的应用导致两个表面上的计数低于 1.7 log CFU/coupon 的检测限(减少 5.9 log CFU/coupon 或更少)。这项研究表明,在 C & D 处理后,单核细胞增生李斯特菌能够在 PVC 上形成单一和多种生物膜,并且菌株多样性高。这突出表明需要对 PVC 和类似表面应用更严格的 C & D 制度处理,以有效去除食品加工表面的生物膜细胞。
Marina Antongiovanni是Baldi,Statia antongiovanni。 Greggorio I. Gregory I. Gavier I. Pizarro或Pradeep Koulgi,Pradeep Koulgi,Daniel Mueller V,B,B,B,Robert Mueller W,Ranjini Murial A,X,X,Sofia Nanni G和,Mauricio No,AA AA A. Prieto-Torres AB,Jaysree Ratnam和Jaysree Ratnam和罗伊·罗伊(Roy Roy Roy)的聚会,菲利普·鲁芬(Philippe Rufin),A,玛丽安娜·罗芬(Mariana Roffin)和马沙·桑卡兰(Mashah Sankaran),巴斯克·托雷斯(Basque Torres)AJ,AK,Srinas Vaidanatan Al,Maria Valleys A,Am,Am,An,An,Malika Virah-Sawmy a。 Tobias Kummer。