Raymond APY,2024年11月12日,第2页,将筛选干燥的混合物的粒径,然后在天然气体式窑炉内的加压,旋转的无氧反应堆(钙)中,在高达1,300°F的温度下进行热解。sbs表示热解输出将是化学稳定的无机固体(生物炭)和合成气(Syngas)。生物炭将被冷却,水合,沉淀和作为土壤修订产品出售。syngas - 由甲烷,硫和挥发性有机化合物(VOC)组成,从生物固醇和木材混合物中解析出来 - 将燃烧在热氧化剂中。氧化剂的热量将回收到旋转干燥器。将通过一系列空气污染控制装置来造成各种过程的排气,并通过115英尺高的堆栈排出到大气中。
制冷剂回路:• 压缩机:- 全封闭涡旋或往复式• 风冷冷凝器- 翅片管- 1/4 至 20 吨型号中风扇产生的气流- 25 至 30 吨型号中鼓风机产生的气流• 水冷冷凝器- 1 至 10 吨型号中管式- 15 至 40 吨型号中壳管式- 所有型号中的水调节阀• 带湿度指示器的制冷剂视镜• 热力膨胀阀• 2、3、4、7.5、20、25、30 和 40 吨型号中微处理器控制的 50% 热气旁通容量控制系统• 5、10 和 15 吨标准型号中微处理器控制的 20-100% 节能容量调节,带有数码涡旋压缩机。 • 蒸发器 - 1/4 至 1 1/2 吨型号采用铜管中管 - 2 - 40 吨型号采用不锈钢钎焊板 • 过滤干燥器 • 液体管路电磁阀
热湿压缩空气进入空气对空气热交换器 (1),在此被离开干燥器的干燥空气预冷。制冷剂压缩机 (3) 压缩制冷剂气体并将其推过冷凝器 (4),在此将其冷凝为高压液体。然后,制冷剂液体通过毛细管/校准孔 (5),以低压液体的形式计量进入蒸发器 (2)。微处理器通过“脉冲”控制电磁阀 (6) 的打开和关闭,使工作周期适应实际工作条件。在部分负荷条件下,只有一小部分制冷剂通过电磁阀 (7) 的校准孔口流向压缩机,因此消耗的能量较少。预冷空气进入蒸发器 (2),在那里被进入的制冷剂液体冷却到所需的露点,制冷剂液体改变相态并变成低压气体,适合在返回制冷剂压缩机 (3) 的吸入侧时继续该过程。然后,离开的冷干压缩空气返回到空气对空气热交换器 (1),在那里被进入的空气重新加热,以防止设备出汗。
热湿压缩空气进入空气对空气热交换器 (1),在此由离开干燥器的干燥空气进行预冷却。制冷剂压缩机 (3) 压缩制冷剂气体并将其推过冷凝器 (4),在此将其冷凝为高压液体。然后,制冷剂液体通过毛细管/校准孔 (5),以低压液体形式计量进入蒸发器 (2)。微处理器通过“脉冲”控制电磁阀 (6) 的打开和关闭,使工作周期适应实际工作条件。在部分负荷条件下,只有一小部分制冷剂通过电磁阀 (7) 的校准孔口流向压缩机,因此消耗的能量较少。预冷空气进入蒸发器 (2),在那里被进入的制冷剂液体冷却到所需的露点,制冷剂液体改变相态并变成低压气体,适合在返回制冷剂压缩机 (3) 的吸入侧时继续该过程。然后,离开的冷干压缩空气返回到空对空热交换器 (1),在那里被进入的空气重新加热,以防止设备出汗。
一致的出口压力露点:行业领先的干燥剂床 • 工业级活性氧化铝干燥剂珠提供更大的表面积和高抗压强度,从而延长床的使用寿命 • 大型干燥剂床确保 4.8 秒的接触时间..... 允许干燥器入口处的湿润饱和空气干燥至所需的露点。• 工业级干燥剂确保在预期的 3 至 5 年干燥剂床使用寿命内保持最佳性能。• 大流量扩散器确保通过床的均匀流量分布并消除沟流 • 塔的尺寸使得通过床的空气速度不会使干燥剂流化,从而防止床移动和干燥剂扬尘 • 上流干燥允许水和重污染物在进入塔时从气流中掉落,从而保护床免受污染。这样当塔减压时,可以轻松排出污染物 • 可清洁的不锈钢流量扩散器/支撑筛网以及独立的填充和排水口,方便更换干燥剂
经常使用合成农药会由于难以分解的残留物而对环境产生负面影响。生物农药可以是使用化学农药的替代材料,因为它很容易分解自然。生物农药的主要原材料是含有可能对害虫有毒的活性化合物的植物,例如诺伊叶。noni叶子可以用作生物农药的原料,因为它们的生物碱化合物的含量可以杀死害虫。制造生物农药最重要的过程之一是干燥原材料,旨在去除水含量,因为高水含量会干扰提取过程。本研究旨在比较使用太阳烘干机和烤箱干燥的Noni叶的含量。由于太阳能干燥机的加热有所波动,因此重要的是要回顾产生的生物农药的质量。使用GCMS分析测试使用太阳能干燥器和烤箱之间生物农药质量的结果表明,生物农药含量并没有太大不同。但是,太阳能干燥机产生的生物农药具有胺基化合物的最高含量,即乙基羟嗪,而烤箱产生的生物农药的羧酸和酯类组的含量最高。
用户组和 CCJ 包括:劳伦斯堡电力公司 (Lawrenceburg Power),用于性能和灵活性升级 (p 10)、液压阀门执行器 (12)、氢气干燥器 (12)、校准过程 (16)、测地线圆顶 (20)、防火 (20) 和燃烧器管理 (24)。罗文电厂 (Plant Rowan),用于消除压缩机排气阀故障 (26)。埃尔伍德能源公司 (Elwood Energy),用于培养下一代多技能员工 (28)。埃芬汉姆县电力公司 (Effingham County Power),用于减少不平衡和差异费用 (30)、进行逻辑更改以提高可靠性 (31)、延长 HRSG 下部密封寿命 (32)、使用塔排污灌溉土地 (34) 和安全卸载化学品 (35)。伍德布里奇能源中心 (Woodbridge Energy Center),用于简化 HEP 检查 (37)、内部培训计划 (38)、消除危险气体警报和回流 (39) 和改善防火 (40)。
本研究讨论了太阳能和风能辅助混合干燥系统的能量、能量和可持续性分析。干燥过程由太阳能干燥器进行。风能用于提供干燥装置中风扇运行所需的电能。因此,干燥过程不需要外部能源。这项研究的主要目的是促进开发一种经济且环保的干燥系统,该系统仅使用两种不同的可再生能源来运行。实验确定了香蕉片的干燥特性。实验结果发现,干燥机的能量效率在 68.04 到 83.89% 之间。还从废物能量率、改进潜力和环境可持续性方面对该系统进行了检查。评估表明,与其他传统太阳能干燥机和太阳能辅助混合干燥机相比,混合干燥机的能量效率分别高出 57.7% 和 21.52%。此外,能源回收期确定为 1.36 年。这一结果清楚地表明,与其他太阳能干燥机相比,该系统可以在大约 38.18% 的时间内回收其消耗的能源。© 2022 Elsevier Ltd. 保留所有权利。