本论文代表在间接模式太阳烘干机(ISD)中使用热热储存(THS)设备的辣椒和薯片的干燥。该实验的目的是在白天为PCM材料充电,当太阳辐射更多并且PCM在辐射不足以干燥产品时释放热量。干燥机由矩形管太阳能收集器,风扇,相变材料,干燥室和50W太阳能电池板制成。太阳能空气收集器和干燥室特征还计算出用于研究干衣机的热性能。在无负载条件下,还测试了干燥机在使用PCM下定义最大热性能。辣椒干燥的分析表明,辣椒的水分含量从初始值(WB)降低到托盘1,Tray 2,Tray 3和Open Sun的最终水分含量分别为8.40%,14.59%,18.97%和29.77%(WB)。同样,对马铃薯干燥的实验研究表明,从入门估计为85.05%(WB)到结论性的水分含量减少到3.89%,7.84%,14.84%和39.39%(WB)的结论性水分含量分别分别为Tray1,Tray2,Tray3,Tray3,Tray3,Tray3和Open Sun Drying。矩形管太阳加热器和干燥室的总体平均效率分别为64%和22.08%。实验的结果是,由于利用相变材料,干燥室的温度和湿度高于傍晚和晚上的环境温度和空气水分。
rs-class.org › Industry › getIndustry 带有铝合金(BƏMA、BAMA)外壳的产品设计用于安装在干燥室中。一种文档,vydavaemogo na izdelie。文档类型...
使用硫化物固体电解质 (SE) 的全固态电池 (ASSB) 是下一代能源装置的有吸引力的候选者,其寿命比使用有机溶剂的液态锂离子电池 (LIB) 更长。众所周知,即使在干燥室等环境中,硫化物 SE 暴露在潮湿环境中也会导致离子电导率降低并产生有毒的硫化氢。然而,暴露在潮湿环境中对 ASSB 电池性能的影响迄今为止尚未完全阐明。为了填补这一知识空白,本文描述了水分对硫化物 SE 未暴露或暴露在露点为 -20°C 的干燥室模拟空气中的 ASSB 正极耐久性的影响的研究。在电池耐久性评估之后,对正极进行了飞行时间二次离子质谱 (ToF-SIMS) 测量,并利用暴露的 SE 观察了电池中的特征降解模式。
,然后您通过红外辐射提供热量,并在非常低的真空条件下接触。然后该过程完成了,您可以使用加压测试,Pirani与电容度计,您基本上将将产品删除到一个容器中,您可以移动到任何地方以填充内部。因此,在IMA生活中,它们基本上具有相同的冻结过程。这是一个低温柱。但是他们拥有的是两个冷凝器,并且可以进行连续的喷雾干燥过程。您冻结颗粒,将它们收集在中间室中,然后将它们倒入干燥室,其中您有某种传送带,将冷冻的颗粒移动到它们实际干燥。我建议您查看那里的链接,并可以从他们的网站上获取一些详细信息。
• 600 平方英尺的干燥室,相对湿度为 1%,用于处理对水分敏感的材料 • 具有温度和湿度控制的高空舱,用于航空电池 • 用于金星 (>450C) 测试的高温炉 • 约 20 个惰性可编程环境室,温度范围为 -75C 至 +200C • >200 个独立电池测试通道,用于完全无人值守的实验室规模电池和大型电池模块测试 - 高达 400A 和 400V • 用于基础研发的湿化学实验室 • 3D 打印功能 • 卷对卷涂布机,用于扩大电极制造 • 半自动化软包电池堆叠设备 • 用于惰性组装和破坏性物理分析的手套箱 • 用于电池堆焊接的超声波焊机 • 安全装置
使用硫固体电解质(SES)的全稳态电池(ASSB)是有吸引力的候选物,因为与使用有机溶剂相比,使用液体型锂离子电池(LIBS)比液体型锂离子电池(LIBS)更长。sulfer ses,即使在干燥室等环境中,也会在暴露于水分时会降低其离子电导率并产生有毒的氢硫。然而,到目前为止,尚未完全阐明水分暴露在ASSB细胞性能上的影响。旨在填补这一知识的差距,本文描述了水分对ASSB阳性电极的耐用性的影响,并在这项研究中以露室模拟的空气暴露或暴露于干室模拟的空气中,在这项研究中为-20°C。在细胞耐用性评估后,在阳性电极上进行了二级离子质谱(TOF-SIMS)测量时间,并使用裸露的SE在细胞中观察到了特征降解模式。
使用硫固体电解质(SES)的全稳态电池(ASSB)是有吸引力的候选物,因为与使用有机溶剂相比,使用液体型锂离子电池(LIBS)比液体型锂离子电池(LIBS)更长。sulfer ses,即使在干燥室等环境中,也会在暴露于水分时会降低其离子电导率并产生有毒的氢硫。然而,到目前为止,尚未完全阐明水分暴露在ASSB细胞性能上的影响。旨在填补这一知识的差距,本文描述了水分对ASSB阳性电极的耐用性的影响,并在这项研究中以露室模拟的空气暴露或暴露于干室模拟的空气中,在这项研究中为-20°C。在细胞耐用性评估后,在阳性电极上进行了二级离子质谱(TOF-SIMS)测量时间,并使用裸露的SE在细胞中观察到了特征降解模式。
摘要:容量范围为 1-100 mAh 的紧凑型可充电电池适用于外形尺寸受限的可穿戴设备和其他高性能电子设备,这些设备的核心要求包括高体积能量密度 (VED)、快速充电、安全性、表面贴装技术 (SMT) 兼容性和长循环寿命。为了最大限度地提高 VED,我们开发了采用卷对卷工艺在超薄不锈钢基板(厚度为 10-75 μm)上制造的无阳极固态锂薄膜电池 (TFB)。高设备密度干法工艺图案化流程定义了可定制的电池设备尺寸,同时产生的废料可忽略不计。整个制造操作在传统的湿度控制洁净室中进行,无需昂贵的干燥室环境,并允许简化、降低制造成本。使用无阳极架构的这种扩大规模还可以实现与热预算兼容的封装和金属化方案,以与行业兼容的 SMT 工艺为目标。进一步的可制造性改进,例如使用高速测试,增加了大规模生产所需的总体要素范围。
对锂离子电池的需求迅速增加。可能改进生产技术是提高可持续性和成本的关键杠杆。锂离子电池电池的生产很复杂,受生产环境的影响很大。生产过程的大部分必须发生在所谓的干净和干燥的房间中,以严格控制颗粒,温度和湿度。特别是在干燥室条件下空气的除湿需要大量的能量。此外,在某些不得干扰操作安全的过程中发出污染物。通过所谓的迷你环境给出了可能的改进。这个概念大致描述为单个过程步骤的封装,提供了许多理论上的好处,例如改进的过程控制,增强的产品质量,提高工人的安全性和减少的能源消耗。尚未确定电池电池生产中迷你环境的概念。本文与电池机械,清洁室和干旱房间以及封装行业的关键利益相关者以及封装行业介绍了行业和研究所的调查结果。结果表明,尽管在成功实施之前必须克服许多电池电池生产中迷你环境的潜力,但必须克服许多障碍。例如,必须制定改编的整体生产系统和新的逻辑措施。