- 所提供的个人信息仅用于我们中心的信息和通信。 未经该人的同意,除上述目的以外的任何目的都不会使用或提供给第三方。 ・请注意,作为我们中心公共关系活动的一部分,我们可以使用当天拍摄的照片和视频。
图 1.1.1:管道埋设、暴露和跨度之间的差异 8 图 1.3.1:默多克和 CMS 区域设施和管道 10 图 1.6.1:默多克设施在英国大陆架的位置(以红色表示) 17 图 1.6.2:默多克设施布局 18 图 1.6.3:位置、相邻设施和环境敏感区域 21 图 1.6.4:位置和环境敏感区域 22 图 2.1.1:默多克设施照片(从左到右,MA、MC 和 MD) 24 图 2.1.2:默多克设施照片(从左到右,MD、MC 和 MA) 25 图 2.2.1:默多克 MD 模板照片 26 图 2.5.1:默多克设施 500 米区域 30 图 2.6.1: PL929 和 PL930 在 KP180.409(NTS)处 31 图 2.6.2:PL253 Esmond 管道在 ~KP129(NTS)处穿过 PL929 和 PL930 31 图 2.6.3:PL930 在距 MLWM(NTS)约 KP20.0 处穿过 PL929 32 图 2.6.4:PL930 和 PL929 距 MLWM(NTS)约 4.8 公里处分离 32 图 2.8.1:估计安装库存饼图 35 图 2.8.2:估计管道库存饼图,不包括。沉积岩石 36 图 3.1.1:Murdoch MA 上部结构向北的视图 37 图 3.1.2:Murdoch MC 上部结构向北的视图 38 图 3.1.3:Murdoch MD 上部结构向南的视图 39 图 3.2.1:Murdoch MA 导管架 3D 视图 41 图 3.2.2:Murdoch MC 导管架典型侧视图 42 图 3.2.3:Murdoch MD 导管架典型侧视图 43 图 6.3.1:项目计划甘特图 61 图 A1.1.1:Murdoch 500m 区域外的管道交叉示意图 64 图 A2.1.1:PL929 Theddlethorpe 进场(仅供参考) 65 图 A4.1.1:公共通知 - 伦敦公报,2022 年 3 月 7 日 75 图 A4.1.2:公告 - 《每日电讯报》和《赫尔每日邮报》,2022 年 3 月 7 日 75
光子学为探索非经典计算资源提供了一个出色的平台[1],因为纠缠可以通过光学非线性效应方便地产生[2-4],而线性操控协议可在多个自由度上实现[5-7]。人们做出了巨大的努力来产生和操控高维纠缠态,既用于量子力学的检验[8],也用于量子技术的应用[9]。人们致力于增加单个光子上编码的信息量[10],并实现高维通用线性运算,以扩展量子处理的能力,增强量子计算和模拟的多功能性[11]。高维量子编码已在光路域[12]、频域[4]、时间模域[13,14]和横向空间模域[15–17]中得到演示。对于第一个域,Reck等人[5]展示了如何使用由相位调制器和耦合器组成的级联基本块实现任意幺正算子。利用Reck等人的方案,在路径域中报道了维数从6到26的可编程矩阵算子和投影仪[9,12,18,19]。然而,仅实现了6×6的任意变换矩阵,而由于移相器和定向耦合器的排列复杂性不断增加,其他演示都是固定的或部分可调的。在频域,量子
公共信息会议(下午 5:30 至晚上 7:30)| 2020 年 2 月 27 日星期四 印第安河州立学院沃尔夫中心 | 2400 S.E.萨勒诺路 | Stuart, FL 34997