大规模电化学储能可以促进可再生能源的利用,并在可再生能源高渗透率下保证电力系统的稳定性。但电化学储能产业的商业化在很大程度上受到其成本的制约,因此本研究研究了电化学储能的技术特点和经济性分析,并对不同电化学储能技术的平准化成本(LCOS)进行了详细分析。研究结果表明,在储能调峰应用中,铅碳(12 MW功率、24 MWh容量)的平准化成本为0.84元/kWh,磷酸铁锂(60 MW功率、240 MWh容量)的平准化成本为0.94元/kWh,全钒液流(200 MW功率、800 MWh容量)的平准化成本为1.21元/kWh。详细分析成本构成可知,储能项目的Capex和充电成本占比较高,Opex和税费成本占比较低,储能项目之间的差异在于重置成本的占比。最后,对四个因素进行了敏感性分析,本研究考虑了往返效率、储能时长、单位初始投资以及储能应用场景对储能系统LCOS的影响。其中,不同应用场景的LCOS不同,对于输配电(T&D)应用,磷酸铁锂的LCOS最低,这是由于其与铅碳相比具有长寿命优势。
© 作者,经 Springer Nature Switzerland AG 2022 独家授权 本作品受版权保护。所有权利均由出版商独家和排他性地授权,无论涉及全部或部分材料,特别是翻译、重印、重复使用插图、朗诵、广播、在微缩胶片或任何其他物理方式上复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或今后开发的类似或不同的方法。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着,即使在没有具体声明的情况下,这些名称也不受相关保护法律和法规的约束,因此可以免费用于一般用途。出版商、作者和编辑可以放心地假设本书中的建议和信息在出版之日被认为是真实和准确的。出版商、作者或编辑均不对本文所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对于已出版地图中的司法管辖权主张和机构隶属关系保持中立。
对发电能力扩张的投资需要对未来发电技术的竞争价值进行评估,而该评估是作为一套复杂的建模系统的一部分来确定的。为了更好地理解 NEMS 中的投资决策,我们使用专门的措施来简化这些建模决策。平准化电力成本 (LCOE) 是指在指定的成本回收期内建造和运营发电机所需的估计收入。平准化避免电力成本 (LACE) 是该发电机在同一时期可获得的收入。从 AEO2021 开始,我们将包括平准化存储成本 (LCOS) 的估算值。虽然 LCOE、LCOS 和 LACE 不能完全涵盖 NEMS 中考虑的所有因素,但当将它们一起用作价值成本比(LACE 与 LCOE 或 LACE 与 LCOS 的比率)时,它们可以合理地比较多种技术之间的一阶经济竞争力,而单独使用 LCOE、LCOS 或 LACE 则无法做到这一点。
摘要:新能源储能对于实现“双碳”目标和以新能源为主体的新型电力系统至关重要,但目前其成本较高、经济性较差。本文基于全生命周期视角对新能源储能的平准化成本进行研究,基于LCOE和学习曲线法,构建了新型储能平准化成本估算模型和预测模型。基于电化学新能源储能的最新发展现状,测算了锂离子电池、液流铝电池、液流锌电池的储能平准化成本,分析了各类储能的成本构成及占比,并在此基础上对锂离子电池的平准化成本进行了预测。对比分析显示,锂离子电池的每千瓦时平准化成本最低。本文为源网、负荷三侧储能的建设与布局提供了一定的参考。
其他因素也可能对本文的结果产生重大影响,但在本分析范围内尚未进行研究。这些其他因素可能包括:容量价值与能源价值;网络升级、传输、拥塞或其他集成相关成本;除非另有说明,否则重大许可或其他开发成本;以及遵守各种环境法规的成本(例如碳排放补偿或排放控制系统)。本分析也没有涉及潜在的社会和环境外部因素,例如,对于那些无法负担分布式发电解决方案的人来说,社会成本和费率后果,以及各种难以衡量的传统发电技术的长期残余和社会后果(例如核废料处理、空气污染物、温室气体等)
电能存储系统是光伏太阳能系统和风力涡轮机等间歇性可再生能源技术整合的关键。随着已安装的电池储能系统容量的增加,这些系统对环境的影响也必须是积极的。在这项工作中,提出了一种确定储能集成对孤岛电网能源系统碳足迹的影响和有效性及其减少的方法。引入了两个指标——能源供应的平准化排放量 (LEES) 和每增加一个储能单位的排放量减少量 (R)。将提出的方法应用于孤岛电网场景,以确定 LEES 值随 BESS 的峰值功率和储能容量的变化。为此,还对公用事业规模的锂离子 BESS 进行了简化的 LCA。研究发现,对于所考虑的场景,加入电池系统始终可以有效减少排放,与没有存储相比,最多可以减少近 50%。借助度量 R,所提出的方法还有助于识别应优先纳入额外能源存储容量的孤立能源系统。
最近的研究预测,未来海上风电的平准化能源成本 (LCOE) 将大幅下降,这在很大程度上归因于技术创新带来的预期成本降低。本研究评估了技术导致的一系列资本、运营和财务成本类别的下降所导致的 LCOE 的空间变化。固定底部和浮动海上风力发电厂的空间成本模型用于模拟对数千个潜在美国场址的影响。由于所考虑场址的地理空间特征不同,并且这些输入参数具有非线性的交互依赖性,单个涡轮机子系统成本的特定变化会产生一系列 LCOE 结果;例如,净容量系数提高 10.8% 可使不同场址的 LCOE 降低 6% 至 20%。这项研究扩展了现有的海上风电文献,这些文献通常评估单个场址的成本敏感性,而不考虑 LCOE 的空间差异。结果表明,技术创新的影响可能相当大,在优先考虑技术创新研究或资助决策以推进美国海上风电技术时,应从空间和时间角度进行考虑。
其他因素也可能对本文的结果产生重大影响,但在本分析范围内尚未进行研究。这些其他因素可能包括:容量价值与能源价值;网络升级、传输、拥塞或其他集成相关成本;除非另有说明,否则重大许可或其他开发成本;以及遵守各种环境法规的成本(例如碳排放补偿或排放控制系统)。本分析也没有涉及潜在的社会和环境外部因素,例如,对于那些无法负担分布式发电解决方案的人来说,社会成本和费率后果,以及各种难以衡量的传统发电技术的长期残余和社会后果(例如核废料处理、空气污染物、温室气体等)
作者:Zac Cesaro a、Matthew Ives b、Richard Nayak-Luke a、Mike Mason a、René Bañares-Alcántara a* a 牛津大学工程科学系,OX1 3PJ,牛津,英国 b 牛津大学地理与环境学院,OX1 3QY,牛津,英国* 通讯作者:rene.banares@eng.ox.ac.uk。摘要 绿色氨由空气、水和可再生能源合成,是一种无碳储能载体,具有众多潜在的能源应用,包括可供电力部门调度的绿色电力。由于氨的储存和运输成本低,绿色氨可作为所有地区的能源,而无需碳捕获和储存 (CCS) 或地下储氢的地质储存要求。我们在此提供了一种新颖的技术经济分析方法,根据近期和远期技术发展预测 2040 年氨的平准化电力成本 (LCOE),从而填补了氨作为电力行业能源载体应用方面的知识空白。我们发现,到 2040 年,许多地方的绿色氨价格可能低于 400 美元/吨,如果电解槽的成本降低达到乐观水平,或者当使用更有利的可再生资源供应全球绿色氨市场时,价格有可能降至 300 美元/吨以下。我们模拟了通过联合循环燃气轮机 (CCGT) 燃烧将氨转化为电能,这是实现低成本、可调度发电的有前途的途径。当发电厂容量系数低于 25% 时(这在可再生能源发电量较高的电力行业中可能越来越常见),临界点出现在 400 美元/吨左右的氨燃料价格,从而使绿色氨能够与其他主要形式的可调度、低碳或零碳技术竞争,例如天然气、生物能源或采用燃烧后 CCS 的燃煤发电厂。关键词:绿色氨、发电、LCOE、氨裂解、燃气轮机、Power-to-X
表 1 显示了 CAISO 中风能和太阳能的相应能源价值。以电价的产出加权平均值计算,2018 年的结果显示,在同一电力市场中,风能和太阳能的价值不同。平均太阳能 MWh(27.6 美元/MWh)的能源价值比平均风能 MWh(33.7 美元/MWh)的能源价值低 6.1 美元,两者的价值都低于总体平均价格(35.8 美元/MWh)。对于覆盖负荷的公用事业,负荷加权平均电价为 38 美元/MWh,远高于可变可再生能源价值。风能和太阳能的价值可能超过当年开始的项目的补贴 LCOE,因此在这种情况下,REC 值为零。计算风能和太阳能的价值是一项简单的电子表格练习,需要每小时的电价和可再生能源产出数据,但这些计算需要的努力远远超过 LCOE 等随意的粗略计算。