图 3. 使用覆盖样本与使用完整人口普查加州训练数据相比,在 10 次迭代采样和训练线性回归模型时平均性能改善/恶化。覆盖样本占完整人口普查训练数据的 20%。误差线表示标准偏差。正值表示在覆盖样本上训练的模型的平均 MSE 比完整人口普查训练数据模型的平均 MSE 有所改善。负值表示与使用完整人口普查训练数据相比,抽样会降低性能。所有州的平均性能提高了 2.1%。
本文研究了网络化多智能体系统中的学习增强分散式在线凸优化,这是一个尚未得到充分探索的具有挑战性的场景。我们首先考虑一种线性学习增强分散式在线算法(LADO-Lin),该算法以线性方式将机器学习(ML)策略与基线专家策略相结合。我们表明,虽然 LADO-Lin 可以利用 ML 预测的潜力来提高平均成本性能,但它不能保证最坏情况的性能。为了解决这个限制,我们提出了一种新颖的在线算法(LADO),该算法自适应地结合 ML 策略和专家策略来保护 ML 预测,从而实现强大的竞争力保证。我们还证明了 LADO 的平均成本界限,揭示了平均性能和最坏情况鲁棒性之间的权衡,并展示了通过明确考虑鲁棒性要求来训练 ML 策略的优势。最后,我们对分散式电池管理进行了实验。我们的结果突出了 ML 增强在提高 LADO 的平均性能以及保证的最坏情况性能方面的潜力。
在药物发现中,识别靶蛋白和分子之间的结合至关重要。当每个任务的信息量较小时,多任务学习方法已被引入以促进任务之间的知识共享。然而,多任务学习有时会降低整体性能或在各个任务的性能之间产生权衡。在本研究中,我们提出了一种通用的多任务学习方案,通过组选择和知识提炼,不仅可以提高平均性能,还可以最大限度地减少个体性能的下降。根据配体靶标组之间的化学相似性来选择组,并将同一组中的相似靶标一起训练。在训练过程中,我们应用教师退火的知识提炼。多任务学习模型由单任务学习模型的预测引导。这种方法的平均性能高于单任务学习和经典多任务学习。进一步的分析表明,多任务学习对于低性能任务特别有效,知识提炼有助于模型避免多任务学习中单个任务性能的下降。
在解释候选主动监控控制图时,还必须考虑其他一些因素。一个非常重要的因素是发动机油添加剂包开发的“学习曲线”效应。如前所述,用于生成候选 EWMA 图表的“目标结果”是根据测试首次被美国化学理事会行为准则接受时的候选油性能生成的候选真实性能估计值。由于当时许多测试都是新开发的,因此行业几乎没有时间确定通过测试所需的化学成分;因此,预计候选油的性能会更低或更差。由于在后续测试中确定了所需的化学成分(“学习曲线”效应),预计候选油的平均性能将向更高的性能发展。因此,将后续结果与初始目标进行比较可能会导致错误的结论,即测试运行得温和,而测试的严格程度实际上已经达到目标。
训练集中现有的被称为“新的”。与训练集相比,测试集有两种类型:(1)已知化合物和已知靶标(旨在为已知活性化合物识别更多可能的靶标);(2)新化合物和已知靶标(旨在为新化合物识别靶标)。因此,我们进行了两个级别的验证:成对拆分验证和化合物拆分验证。对于成对拆分验证,训练集和测试集是通过根据分层随机拆分数据集生成的。它衡量我们模型的平均性能,因为测试数据集包含两种类型的对。至于化合物拆分验证,它将化合物分成 10 个部分,因此与这 10 个部分中的 1 个相关的化合物-靶标相互作用被用作测试集,与剩余 9 个部分相关的相互作用保留在训练集中。它
在量子计算机上模拟汉密尔顿动力学是量子信息处理的核心。在本次演讲中,我将讨论交换和反交换在汉密尔顿模拟中的作用。在 Trotter 算法中,最坏情况的算法误差与汉密尔顿加数的嵌套交换子的谱范数有关。我们最近的工作 [PRL 129.270502] 表明,汉密尔顿模拟的平均性能与嵌套交换子的 Frobenius 范数有关。为了处理交换子中的 Trotter 误差,我们提出了使用 LCU 补偿 Trotter 误差的汉密尔顿模拟算法,该算法兼具两者的优点 [arXiv: 2212.04566]。反交换一直被视为一种障碍,它使模拟变得更加困难,并且需要额外的资源才能达到所需的模拟精度。在我们最近的工作 [Quantum 5, 534 (2021)] 中,我们发现反向交换可以在 LCU 类型的汉密尔顿模拟算法中提供优势。基于反向交换取消,我们减少了算法误差并提出了改进的截断泰勒级数算法。
这项研究旨在开发脑部计算机界面,该界面可以使用脑电图(EEG)信号来控制电动轮椅。首先,我们使用Mind Wave Mobile 2设备从头皮表面捕获原始的EEG信号。使用快速傅立叶变换(FFT)将信号转换为频域,并过滤以监视注意力和放松的变化。接下来,我们执行了时间和频域分析,以识别五个眼手势的特征:打开,闭合,每秒眨眼,双眨眼和查找。基本状态是开放的眼球手势,我们将其余四个动作手势的特征与基本状态进行了比较,以识别潜在的手势。然后,我们构建了一个多层神经网络,将这些功能分类为控制轮椅运动的五个信号。最后,我们设计了一个实验轮椅系统,以测试所提出的方法的有效性。结果表明,脑电图分类高度准确且计算上有效。此外,不同个体的脑控制轮椅系统的平均性能超过75%,这表明这种方法的可行性。
提出了一种低计算成本方法来检测普遍存在的通信和控制应用中的p300波,这称为p300嵌入式处理(PE-P300)。 div>PE-P300的入口是通道的脑电图信号(EEG),该方法的体系结构基于卷积神经元网络。 div>还提出了一种嵌入式脑部插入界面系统PE-P300方法,该系统还使用了四个以盒子形式的视觉刺激来唤起p300波。 div>该界面与用于机械系统的移动或控制的Internet网络具有连接性。 div>对于实验,生成了由8个受试者的EEG信号形成的数据库,根据结果,PE-P300能够识别每个受试者的EEG信号上的p300波,平均性能为96%。 div>此外,PE-P300仅需要一个电极,并且可以实时处理其低复杂性。 div>作为结论,PE-P300是文献中最有竞争力的方法之一,由于其96%的性能,电极数量较低(活性电极),并且将P300波的处理扩展到日常应用中使用的无处不在系统。 div>
摘要 — 室内定位和情境感知正成为各种应用的两项关键技术。最近,通过采用超宽带 (UWB) 技术,人们已经实现了厘米级精度和低功耗的实时定位系统。自 2015 年以来,Decawave 已生产出商用 UWB 集成电路,利用飞行时间测量技术来估计两个代理之间的距离。这项工作介绍了两台 Decawave 收发器(DW1000 和 2020 年发布的新款 DW3000)之间的性能研究。测试空间包括视距内区域和由 UWB 无线电信号反射到各种障碍物而引起的各种非视距条件。最后,我们分析了不同配置下的功耗,并对两台设备进行了比较。结果表明,两者在 1 米以上的测量范围内具有相似的精度,而考虑到较短的距离,DW3000 的平均性能要好 33.2%。此外,新收发器在实时测量过程中的功耗降低了近 50%,平均值达到 55 mW。索引术语 — 超宽带技术、超宽带通信、物联网、室内定位、功耗
脑机接口 (BMI) 旨在通过将神经信号“解码”为行为来恢复脊髓损伤患者的功能。最近,非线性 BMI 解码器的表现优于之前最先进的线性解码器,但很少有研究调查这些非线性方法提供了哪些具体改进。在本研究中,我们比较了时间卷积前馈神经网络 (tcFNN) 和线性方法在开环和闭环设置中如何预测个体手指运动。我们表明,非线性解码器可以生成更自然的运动,产生的速度分布比线性解码器更接近真正的手部控制 85.3%。针对神经网络可能得出不一致解决方案的担忧,我们发现正则化技术将 tcFNN 收敛的一致性提高了 194.6%,同时提高了平均性能和训练速度。最后,我们表明 28 tcFNN 可以利用来自多个任务变体的训练数据来提高泛化能力。这项研究的结果表明,非线性方法可以产生更自然的运动,并显示出在约束较少的任务上进行泛化的潜力。31