在这项研究中,检查了构建方向对聚乳酸或PLA聚合物拉伸强度的影响。利用直径为1.70mm的PLA丝,根据塑料的ASTM D638规格,使用SolidWorks软件设计拉伸测试样品。然后,样品以45度的方向打印3D,使用FDL 3D打印机直立。最终的样品使用痛风通用测试机进行了应力测试,发现平坦的方向样品由于整个层上更有效的负载分布而导致的紧张应力最大。另一方面,垂直印刷的样品显示出最小的拉伸应力,表明有效的负载传输较低。光学显微镜用于观察材料的打印层方向。
- 目前通过降落测试的撞车道值针对燃料电池和燃油箱进行调节。由于燃油箱的流行和飞机中电池系统的新颖性,Easa采用了这些燃油箱掉落测试要求,将电池系统用作起点。FAA也在同时研究更永久的方法的同时,正在追求这一道路。- 燃油系统的滴测试需要将50英尺的几乎填充的燃料系统置于平坦的,不形成的表面上。在滴落后,监视燃油系统以泄漏或火灾。同样,电池系统应重新充电并从至少50英尺处掉落,然后监视气体或液体的泄漏以及火灾或爆炸。•此测试程序和仿真研究将提供有关与FAA和行业相关的项目的信息:
朝着工业和学术的角度实现强大的潜在应用。表面上操纵缓冲液和有机溶剂对于许多生物,医学和/或化学操作都是基础。[1-9]用于迅速现场诊断和治疗,临床诊断,基于细胞的应用以及检测或感测的护理点应用是使用情况的例子。[10]大量精力集中在微型化和自动化上,也可以将它们视为远程医疗应用的可能路线,提高效率并减少所涉及的材料总量。例如,在进行诊断测试的情况下,涉及微流体芯片涉及的生物材料和化学试剂的减少可以对比化学成本,增加总加工测试的数量,加快时间的加快时间,并且在自动化的情况下,还可以降低交叉污染和维持的风险。基于智能表面的不同解决方案已被提出,用于控制液滴运动并开放两相油 - 水分离,生物技术,自我清洁和抗质应用,只是为了引用很少的。[11-14]在平面表面上,可以使用多种开发的方法来控制液滴的运动,例如表面声波,磁对照表面,热毛细血管,介电粒细胞感和电trowetting-n-eilectric芯片。[25,26][15–21]在后一种情况下,电极的像素尺寸限制了可以操纵的最小液滴尺寸,以克服该问题,已经提出了轻图案的电解图,以在开放的,毫无曲线的,特征和光导能的表面上进行液滴操纵。[22]创建液体操作表面梯度的替代方法包括对外部刺激的响应改变表面电荷密度和质地的改变(例如,磁/电场)以及表面富集,具有化学功能基团的表面群体,以动态地控制表面的性能,[23,24]越来越需要创建平坦的模式,或者在平坦的范围内屈曲,或者是柔韧性的,或者是柔韧性的。
太阳能光伏 • 这些开发商背后的前提是,他们都计划在通往 2 号门的场地上建造发电机或储能系统。 • 为了确定这些开发商的成本,我们使用 Baringa 对 GB 太阳能、陆上风能和储能资本支出、运营支出和最低收益率假设的假设。我们还对开发和建设时间表做出了假设,以帮助我们分析成本。 • 我们利用公司旨在超越最低收益率的洞察力来估算收入。因此,收入可以用一个平坦的概况来粗略估计,该概况确保开发商的表现比最低收益率高 0.5%。1 • 我们使用 0.5% 是因为这是我们表现 1 的低水平,我们想看看低盈利项目可以容忍多大的工具。这将为工具的成本提供上限。
拓扑绝缘子的边缘状态可用于探索低维和拓扑界面上出现的基本科学。实现可靠的电导量化已被证明对螺旋边缘状态具有挑战性。在这里,我们在扭结状态下显示了宽的电阻平台 - 伯纳尔双层石墨烯中量子谷霍尔效应的表现 - 量化为零磁场处的预测值。高原耐药性的温度依赖性非常弱,高达50 kelvin,并且在数十MV的直流偏置窗口内是平坦的。我们演示了拓扑控制开关的电气操作,开/关比为200。这些结果证明了扭结状态的鲁棒性和可调性及其在构建电子量子光学设备方面的承诺。
混合制造系统为单个机器设置中的集成添加剂和减法方法提供了一个平台[1,2]。具有5轴沉积和减法的市售混合制造系统,现在可以在非平面底物上准备和沉积材料,这与大多数添加剂制造工艺不同,这些工艺仅限于平面基板。这项研究的目的是评估与制成部分相关的机械性能,评估称为混合结构的各种沉积物界面界面几何组合。了解非平面底物对所得材料特性的影响在维修期间尤为重要,因为随着几何复杂性的增加,并非总是有必要在平坦的表面上进行材料沉积。
平坦的膜无处不在地变成自然界和人造世界中神秘的复杂形状。在复杂性背后,已连续发现清晰的确定性变形模式是基本应用规则,但仍未实现。在这里,我们破译了薄膜的两种元素变形模式,随着通过缩小的通道的流动滚动和折叠。我们验证这两种模式将厚度范围从微米到原子量表的宽度范围的膜变形。它们的出现和确定性折叠数与föppl -vonKármán数量和收缩比定量相关。揭露的确定性变形模式可以指导二维纸的可折叠设计器微型机器人和精致的结构,并提供了生物形态遗传决定论之外的另一种机械原理。
每个点的负高斯曲率和净曲率为0。因此,这种结构补充了平坦的弯曲结构,例如Polyhedra,Tubes和Sheets 1。一种三维碳基材料,其结构在原子上很薄,并且位于TPMS上是称为Schwarzites 2的碳同素异形体的成员。这些材料尚未合成大小,但自1991年以来就已经存在3,4,5,6。schwarzites和类似雪白兰的材料(例如,不隔离的TPMS碳或“碳泡沫”,没有边缘的连续最小表面结构)将具有有趣的特性,例如弹道电气启发性(也许在室温下)与具有最小除外的完全免费结构相结合。这些特性,除了它们的巨大孔隙和高表面积外,还使这些材料成为气体和离子存储应用的关键候选物。