上下文。植物病原体植物肉瘤肉瘤会导致易感植被的严重下降,包括植物物种的丧失,植被结构和动物群丰度。草丛(Xanthorrhoea spp。)是基石物种,为脊椎动物和无脊椎动物提供最佳栖息地,并且非常容易受到病原体的影响。尽管在特定地点评估了Otway范围的影响,但在整个景观方面,关于Xanthorrhoea australis(澳大利亚格拉斯特里)的损失程度的知识较少。目标。因此,目的是评估三个希思林地地点的影响,并确定X. Australis和易感物种损失的损失的幅度。方法。植物组成,物种覆盖物或丰度以及X. Australis的基础面积在治疗中记录在四方(未感染,感染,侵入后的植被)中。分析包括平流(底漆V7),显着效应(Anosim),物种对相似性/差异性的贡献(Simper)。物种丰富度和易感物种覆盖物,以检测现场,治疗和相互作用的影响。关键结果。未感染植被的物种组成与感染和侵入后的植被截然不同,未感染的地区易感物种更丰富。感染后的植被的易感物种百分比最低。X. Australis在未感染的植被中的平均百分比覆盖率(43%)比在感染区(4.3%)高10倍,在侵入后植被中极低(0.9%)。结论。易感物种的密度下降和灭绝,X. Australis的损失导致了重大的结构植被变化。含义。这些结果对希思林地社区和依赖动物群具有严重影响。限制P. cinnamomi和保护草丛的传播对于他们的安全至关重要。
利用 A-Train 卫星、地面闪电网络和再分析场,研究了南亚中尺度对流系统 (MCS) 的季节和季节内差异。季风前期 (4 月至 5 月) MCS 主要发生在孟加拉国和孟加拉湾东部。在季风期间 (6 月至 9 月),小型 MCS 发生在梅加拉亚高原和东北喜马拉雅山凹口,而大型相连的 MCS 则在孟加拉湾最为普遍。与季风前期 MCS 相比,季风期 MCS 产生的闪电较少,在 CloudSat 观测中表现出更广泛的层状云和砧状反射率结构。在季风期间,孟加拉湾和梅加拉亚高原 MCS 随 30-60 天的向北传播的季节内振荡而变化,而东北喜马拉雅山凹口 MCS 与弱大规模异常有关,但局部 CAPE 增强。在季节内活跃期,一个大型相连的 MCS、降水和闪电增强区从阿拉伯海东北部向东南延伸至印度和孟加拉湾,两侧是抑制异常。在这个增强区内观察到了空间变化:在 MCS 增强较少的地方闪电增强最强,反之亦然。再分析合成数据表明,孟加拉湾 MCS 与季风低压有关,季风低压在活跃的季风期间频繁出现,而梅加拉亚高原 MCS 在间歇期结束时最常见,因为异常西南风加强了朝向地形的湿润平流。在这两个地区,当大规模环境较潮湿时,MCS 表现出更广泛的层状云和砧状云区,闪电较少,反之亦然。
需要针对沿海社区的海洋治理新方法。少数例外,现状不符合沿海社区的各种发展愿望或确保当前和后代的健康海洋。到2030年,蓝色经济预计将增长到2.5-3万亿美元,并且对减轻最低发达国家和小岛发展中国家贫困的潜力特别有兴趣,并支持从199日大流行中获得蓝色的复苏。本文对蓝色经济文献进行了选择性的主题回顾:(i)沿海社区的机遇和风险,(ii)塑造社区参与的障碍和推动者,以及(iii)社区和支持组织所采用的策略,可以增强“可持续的”蓝色经济和改善蓝色经济正义,并为沿海社区提供社会正义。我们的评论发现,在业务和蓝色的生长,工业遗迹,大规模水产养殖,土地填海,采矿以及石油和天然气中,为社区和海洋生态系统培养了红色平流。,如果可持续管理,小规模的植物,沿海水产养殖,海藻种植和生态旅游是最有可能向社区带来好处的人。然而,这些也是最容易受到其他部门的负面影响和累积影响的部门。基于我们对推动者,障碍和战略的评估,本文认为,将沿海社区置于对包容性可持续的蓝色经济的明确愿景的中心,并为社区,从业者和政策制定者共同开发一种可共享且可访问的语言对于更公平的海洋经济至关重要,这对于更加公平的海洋经济至关重要,与社会正义的原则和整体统一的态度和整体统计。
在2005 - 2019年期间,公路汽车的摘要/越南人拥有1000名越南的人,与其他国家/地区的数据收集和实现过程相比,新注册的乘用车在9个座位下的新注册乘用车,2016-2020期,2016-2020新注册的新型乘用车的新型驾驶员9座,新型驾驶员9座的新型驾驶员9个座位,燃料的9个座位,燃料式驾驶员9个座位,这是新的注册车辆的9座,燃料的驾驶员9个座位,燃料的9个座位,燃料的9个座位,燃料的燃油式驾驶员9个座位。 2016-2020 Average engine displacement of newly registered vehicle Newly registered vehicle split by weight, 2016-2020 Average kerb mass of newly registered vehicle (tons) Weighted average fuel consumption by engine displacement Market share by engine displacement and weighted average FC Average FC by engine displacement and fuel type Average FC by engine displacement and engine type Average FC by range of engine displacement Weighted average fuel consumption by weight Market share by kerb mass and average fuel 9座以下新注册的乘用车的消费燃料消耗9座以下的新注册的乘用车的平均FC平均fc,以下是9个座位以下的座位,加权平均FC按燃料类型市场份额和平均CO 2排放值值量的历史平流CO 2排放性能和当前标准(GCO 2 /km)和制造商的新注册汽车数量< /div> < /div>
2 +,使用相对论量子场理论中的功能方法,即量子铬动力学(QCD)。到此为止,我们通过夸克 - diquark方法将三夸克faddeev方程减少到两体方程,在该方法中,重子被视为夸克和有效的diquarks的绑定状态。这种方法已成功用于轻巧和奇怪的重子。夸克 - diquark bethe salpeter振幅(BSA)的伯特salpeter方程(BSE)量达到相互作用内核的夸克乒乓交换。使用彩虹束截断中的Alkofer-Watson-Weigel相互作用确定夸克和diquark成分。BSE是通过将其转换为特征值问题并解决Quarkdiquark BSA的狄拉克敷料功能来实现的,我们使用Chebyshev扩展进行了评估。特征值问题的矩阵与这些考虑因素以及BSE的颜色和平流结构一起构建。这种结构由包含BSE的颜色迹线和avor因子的矩阵表示,以进行不同的diquark跃迁。我们在质量网格上计算地面和激发态的特征值,在质量网格中,物理状态对应于其相应特征值等于一个的条件。结果表明,基态质量与实验的总体一致,在此我们将模型比例设置为基态质量相对于实验质量的平均比率。激发态显示出比接地状态更高的高估。三重迷人的巴里昂也同意晶格QCD结果。使用QCD的潜在模型与晶格QCD和理论计算一致。仍然需要计算双重魅力的重子。
普渡大学,2023 年 1 月 27 日 摘要 目的。基于血管周围空间的解剖学和力学,探索脑间质组织液流动的生物物理学,以便更好地了解淋巴液流动的发生方式。方法。在可快速计算的、分支的、多尺度的脑组织几何模型中研究心脏频率下的液体流动动力学。这些模型由混合的穿透动脉和静脉树提供。它们包括颅内压和血管内压的脉动变化、脑组织的弹性扩张以及沿 Virchow-Robin 空间轴的脑脊液流动阻力的非线性变化。在笔记本电脑上计算由此产生的动脉周围和静脉周围压力的变化以及由此产生的从小动脉到小静脉血管周围空间的间质液批量流量。结果。在典型的生理条件下,较小的远端动脉周围分支和静脉周围分支之间会产生约 0.5 mmHg 的时间平均正压。根据组织几何形状和液压阻力,产生的流量足以每 1 到 10 小时更新一次间质液。增加血管周围空间的径向宽度会降低这种效果。计算出的整个大脑的平均淋巴流量与蛛网膜绒毛测量到的新脑脊液产生量相似。结论。当适当考虑血管周围树的分支结构时,它们的经典解剖结构具有令人惊讶的新兴特性。在动脉周围和静脉周围空间较小的远端分支之间可以发生具有生物学意义的平流量。关键词。平流、阿尔茨海默病、淀粉样蛋白、生物物理学、血脑屏障、体积流量、脑脊液、循环、细胞外、液压、颅内压、血管周围泵送、通透性、软脑膜、脉动、蛛网膜下腔、Virchow-Robin 腔、废物。
•IOT规则引擎:根据创建的规则将数据路由到AWS服务。AWS IOT规则进行分析,并根据主题触发操作。•基本摄入:将设备数据安全地发送到AWS IoT规则操作支持的AWS服务。这通过从摄入路径中删除发布/订阅消息代理来优化数据流量并降低成本。•AWS IOT Greengrass:由于它也具有边缘代理,因此可以无缝地进行边缘代理和云之间的数据传输以及部署到边缘。它可以将数据发送到不同的AWS服务,例如S3,FireHose,IoT SiteWise,IoT Analytics等。•AWS IOT网站:托管服务,有助于按大规模收集,组织和分析工业设备数据。它可用于监视操作,计算性能指标并创建分析工业设备数据的应用程序。•AWS IoT Weletwise:收集,组织和将车辆数据传输到云的托管服务。它可以帮助您获得有关车辆平流的见解,并将其用于诊断,警报和采取实时操作。•AWS IoT Roborunner:提供集中存储,以存储不同机器人供应商系统的数据。可以使用它来可视化机器人位置和单个地图视图上的状态。•Amazon Kinesis:是用于流数据的托管服务,有助于从IoT设备获得见解,并且可以与IoT规则引擎集成。它允许将设备无缝集成到支持非MQTT协议的应用程序。它还有助于将通信层与应用程序层分解。•Amazon简单队列服务(SQS):当IoT应用程序需要一个不需要消息订单的队列时,提供了事件驱动的,可扩展的摄入队列。
罗伯特·萨波斯基(Robert Sapolsky)!尽管有相反的谣言,但人脑的幻想并不那么幻想。让我们将其与果实的神经系统进行比较。当然,两者都是由细胞组成的,神经元扮演着重要的角色。现在,人们可能会期望人类的神经元将与一个平流的神经差异。也许人类会特别使用独特的“神经转移器”使者,特别是华丽的方式与其他神经元进行交流。也许与较低的神经元相比,人类神经元更大,更复杂,以某种方式可以更快地运行并跳高。!我们很难学习,以获得一所顶级大学,以找出一份出色的工作,进入我们选择的疗养院。Gophers不这样做。!但没有。看显微镜下两个物种的神经元,它们看起来相同。它们具有相同的电气正常,许多相同的神经传递剂,相同的蛋白质通道允许离子流入和流动,以及相同的共同基因。神经元在这两个物种中都是相同的基本构建块。!那么区别在哪里?它的数字 - 人类在频率中的每个神经元大约有100万个神经元。和人类的1000亿个神经元出现了一些杰出的事物。有足够的质量,您会产生质量。!神经科学家了解其中一些资格的结构基础。采用语言,这种独特的人类行为。副醒目是人类的额叶皮层。强调它是人类大脑所特有的结构,例如“ Broca的区域”,专门从事语言生产。然后是大脑的“锥体室外系统”,其中涉及精细的运动控制。人类版本的复杂性使我们能够做一些事情,例如,北极熊永远无法完成 - 例如,数字的足够独立运动以在钢琴上弹奏颤音。在所有哺乳动物中发生时,人类版本的线条较大且较密集。,额叶皮质有什么用?表情范围,格雷福利推迟,执行决策 - 制定,长期计划。我们在高中学习努力学习,被吸引到一所顶级大学,进入研究生毕业,从而获得一份好工作,以进入我们选择的疗养院。Gophers不这样做。!还有另一个独特的人类技能领域,神经科学家正在学习一些有关大脑如何将其拉动的领域。!请考虑J. Ruth Gendler的精彩“资格书”的以下内容,这是一群不同资格,表情符号和Apributes的“角色素描”的集合:!!
总固定负电荷密度q tot≈1×10 13 cm - 2结合使用,低界面缺陷密度D IT为≈1×10 11 ev -1 cm -2。[4-9]虽然低d表示相当好的化学表面钝化,但高负q tot会导致表面上的电子密度降低,从而导致重要的田间效应对C-SI表面钝化产生了贡献。因此,这种高负q TOT诱导n型Si表面上的反转层,而在P型表面上形成了积累层。n型Si表面上的内部层使其易于使用n型金属触点处的寄生分流作用。[10] There- fore, Al 2 O 3 is predominantly applied to p -type c-Si surfaces, such as the rear surface of passivated emitter and rear cell (PERC) passivated emitter and rear cell solar cells – the current mainstream cell design in high-volume production [11,12] – or the front-side boron-doped p + emitter of n -type c-Si tunneling oxide passivating接触(TopCon)太阳能电池,由于其效率更高,目前变得越来越有吸引力。[11,13–15] Al 2 O 3对于高级细胞设计的效率也非常相关,范围为26%,例如后部发射极(TopCon)细胞[16]或在氧化物相互作用的背部接触(polo-ibc)细胞(Polo-ibc)细胞上的聚晶体中的多层si,但有效的效果(均为有效的)(未经跨度) - 未经有效的态度(未经) - 未经有效的态度 - 不及格(Untercive)。 必需的。与单层相比,厚度只有几个纳米层的多层层为在纳米尺度上修改材料特性的机会。[19]最近,对不同表面钝化方案的直接比较表明,Al 2 O 3 [3]仍然有改进的余地,随着设备的效果的改善,这变得越来越重要。一个有趣的例子是所谓的界面偶极层,目前对其进行了强烈的侵略,尤其是用于在金属 - 氧化物 - 氧化导管现场效应晶体管(MOSFET)中的应用以调整所需的平板电压。[18-20]它们是由两个或三个不同的介电层组成的多层,可以简单地通过改变双层或三层的数量来提供增加平坦电压的可能性。这种平流电压偏移的起源是偶极子,仅在该多层的特定接口处形成,仅具有一个极性。例如,已经报道了SIO 2 /Al 2 O 3堆栈,其中仅在一个极性的SiO 2 /Al 2 O 3接口处形成偶极子,但在Al 2 O 3 /SiO 2界面上却没有相反的极性。
∂E(t)κe(t)d H 1表示E(t)曲率的平均值(t)。在物理文献中已经提出了这种类型的进化,作为使现象的模型[31,32]。像Mullins-sekerka流一样,集合E(t)的面积沿流量保存,周长不侵扰。曲率流的另一个重要特征是,它可以正式视为周长的L 2-级别流。通常,对(1.1)和(1.2)的平滑解决方案可能会在有限的时间内产生奇异性(例如,请参见[10,10,26,27])。利用所考虑的两个流的梯度流结构,可以通过最小化移动方案(在[3,25]中引入此设置),将弱解定义为(1.1)和(1.2)。此方案定义连续流的离散时间近似,通常称为离散流,具体取决于时间参数h。l 1-限速点为离散流的h→0称为平流,因此,在每次t∈[0,∞)时定义了集合e(t)的家族e(t)。在构建了这个全球范围的弱解决方案后,研究其渐近学是一个自然的问题。关于这些几何流量的解决方案的渐近行为有广泛的文献。一方面,在初始基准的各种几何假设下,一个人能够显示出(1.1)或(1.2)的平滑解决方案的全球及时存在,并表征其渐近行为。关于Mullins-Sekerka流,我们引用了[1,6,11,14],而某些对体积的平均曲率流量的参考为[4、5、5、12、9、34]。另外,人们可以直接研究离散的流量或流量,鉴于最近对所考虑的流量的弱唯一性的结果,这种观点已经获得了显着的兴趣。特别是,这些结果表明,只要存在(1.1)或(1.2)的经典解决方案,任何流动的流量就与之重合。在[13,16]中的(1.1)(在二维中)和[17]中的(1.2)中已证明这一点,在初始数据上的某些规律性假设下,另请参见[23],对于弱的唯一性,对于弱的唯一性结果,导致体积预状的弱弱概念的弱含量是平均平均曲率曲率。在平均曲率流(1.2)的欧几里得设置r 2和r 3中的情况已被很好地理解。第一个结果涉及融合向浮游向球的翻译的收敛,如[21]在n = 2,3。后来,由于具有尖锐指数的Alexandrov定理的新颖定量版本,在[29]中,作者证明了离散流向球,指数速率的收敛,没有其他翻译。随后,他们设法将这项研究扩展到[20,19]中更具挑战性的浮动案例。另请参见[22],有关平面各向异性情况的类似结果。在[20,19]中再次包含t 2中(1.1)的流量溶液的结果,假设初始基准e 0具有固定的阈值。在t 2中,这构成了初始基准e 0满意p(e 0)<2。这个问题至关重要。我们将重点放在平面,定期设置t 2上。在定期设置T N的确,由于流量不会增加周长,因此流量的唯一可能的限制点是球的工会,因此作者可以实质上应用它们在R 2中获得的稳定性结果而不会发生太大变化。