日本东京,2022 年 2 月 17 日——帝人株式会社今天宣布,该公司已推出一种轻质、坚固且经济高效的碳纤维机织织物,该织物采用该公司专有的丝束铺展技术开发而成。这种新型机织织物采用 3K(3,000)碳纤维长丝制成,适用于需要低重量和设计灵活性的应用,例如汽车内饰材料和体育用品。帝人利用其内部的丝束铺展技术,成功地将 3K 织物从成型厚度 0.2 毫米减薄至约 0.15 毫米,与 1K 机织织物成型为碳纤维增强塑料 (CFRP) 时的厚度相同。由于织物交叉纱线的平坦起伏,用帝人新织物制成的 CFRP 具有出色的平滑度,与用 1K 碳纤维机织织物制成的 CFRP 相比,其强度更稳定(根据该公司的内部研究)。此外,帝人特殊的丝束铺展技术效率高,使织物成本低于传统的 1K 碳纤维机织织物。此外,尽管使用 3K 纱线(200g/m 2),帝人仍将重量减轻了 35%,与使用 1K 纱线(125g/m 2)制成的织物相同。帝人现在将向工业和体育产品制造商推销其新面料。加上帝人产品组合中的其他铺展丝束碳纤维机织织物,该公司的目标是在 2030 财年实现 20 亿日元的销售额。展望未来,帝人将继续通过其他创新、高性能材料和解决方案加强其碳纤维产品线,并秉持成为一家支持未来社会的公司这一长期愿景。
摘要背景:最近,计算机断层扫描 (CT) 制造商已经开发出基于深度学习的重建算法来弥补迭代重建 (IR) 算法的局限性,例如图像平滑和空间分辨率对对比度和剂量水平的依赖性。目的:评估人工智能深度学习重建 (AI-DLR) 算法与混合 IR 算法对胸部 CT 图像质量和剂量减少的影响,对比不同临床适应症。方法:在用于胸部 CT 条件的五个剂量水平 (CTDI vol: 9.5/7.5/6/2.5/0.4 mGy) 下对 CT 美国放射学会 (ACR) 464 和 CT Torso CTU-41 体模进行采集。使用滤波反投影、两级 IR(iDose 4 级别 4 (i4) 和 7 (i7))和五级 AI-DLR(精确图像;更平滑、平滑、标准、清晰、更清晰)重建原始数据。计算了噪声功率谱 (NPS)、基于任务的传递函数和可检测性指数 (d ′):d ′ 模型检测软组织纵隔结节(纵隔内的低对比度软组织胸部结节 [LCN])、毛玻璃影 (GGO) 或高对比度肺 (HCP) 病变。两名放射科医生独立评估胸部拟人幻影图像的主观图像质量。他们使用常用的四或五分量表评估了纵隔图像的图像噪声、图像平滑度、纵隔血管与脂肪之间的对比度、实质图像的支气管与肺实质之间的视觉边界检测以及整体图像质量。结果:从标准到平滑水平,平均而言,噪声幅度降低(所有剂量水平:纵隔图像为 - 66.3% ± 0.5%,实质图像为 - 63.1% ± 0.1%),平均 NPS 空间频率降低(所有剂量水平:纵隔图像为 - 35.3% ± 2.2%,实质图像为 - 13.3% ± 2.2%),三种病变的可检测性 (d′) 增加。从标准到清晰水平则发现了相反的模式。从平滑到清晰水平,
摘要:在本研究中,我们提出了一种用于检测和分类脑肿瘤的新型增强型深度学习方法,即降低复杂度空间融合 CNN (RCSF-CNN) 方法。该方法集成了复杂度特征提取,从而提高了脑肿瘤图片特征提取的质量。为了捕获关键的检测属性,提取了图像变量,例如平均值、标准差、熵、方差、平滑度、能量、对比度和相关性。然后,RCSF-CNN 使用这些属性来检测和分类脑癌。当与离散正交斯托克韦尔变换 (DOST) 配对作为中间阶段时,所提出的方法说明了增强型深度学习方法在脑癌识别中的有效性和优越性。研究是通过 Kaggle 使用 BRATS 数据集进行的,网络在 32 个样本上进行训练,并评估了 5 个样本图片的特征。RCSF-CNN 以其高效的架构脱颖而出,其中包括空间融合以及关键的规范化步骤。类激活映射 (CAM) 的加入提高了透明度和可解释性,突出了模型的创新性。MATLAB 仿真工具用于实现,并在自由源脑肿瘤图像分割基准 (BRATS) 数据集上进行了实验研究。脑肿瘤识别的结果显示熵值为 0.008、能量值为 0.8155、对比度值为 0.354。这些熵、对比度和能量值对于脑肿瘤的检测至关重要。此外,在准确度、特异性和灵敏度方面,新技术在脑肿瘤检测中胜过早期的方法,例如传统 CNN、具有修改后的局部二元模式的深度学习和 ML 算法(例如 SVM)。实现的准确度为 98.99%,表明总正确分类水平很高。99.76% 的特异性说明了该方法能够正确识别非肿瘤区域,而 98.43% 的灵敏度则证明了其能够正确检测癌症位置。
模拟示波器在实验室分析应用中几乎被数字或数字化示波器所取代,但它却拒绝消亡。由于其成本低、控制简单易用和实时显示,它仍然是工程师和技术人员进行故障排除的首选。将此视为一项挑战,惠普科罗拉多斯普林斯分部的工程师着手设计一款数字化示波器,故障排除人员不仅会发现它与模拟示波器相当,而且实际上会更喜欢它。HP 54600 系列数字化示波器具有通常与最常用于故障排除的全功能 100 MHz 模拟示波器相关的所有功能。它们具有相同的带宽 - 它们是 MHz - 并且在成本和易用性方面具有可比性。虽然它们显然是连续示波器(显示的波形由点而不是连续的线组成),但 HP 调整系列示波器在大多数情况下对电路调整的响应速度与模拟示波器一样快,而且实际上更适合某些任务。与模拟示波器相比,数字化示波器更受欢迎的原因在于只有数字化示波器才能提供的存储和测量功能。由于波形数据是在内存中采样和存储的,因此可以在触发事件之前和之后查看数据,以数学方式处理数据,并无限期地显示波形并逐渐消失。通过新的架构和两个专用集成电路,显示速率能力提高到每秒一百万点,是其他数字化示波器的五十到一百倍。从第 6 页的介绍性文章开始,到与模拟示波器进行故障排除的正面比较(第 57 页)结束,本期共有 9 篇文章涉及 HP 54600 系列示波器的设计。它们描述了如何通过高水平的电路集成、使用表面贴装技术装载印刷电路板、经济高效的机械封装以及对制造过程的密切关注(包括专用测试和测试设备的成本)来解决成本问题。通过为主要控制功能提供专用旋钮而不是菜单驱动的软键用户界面,部分解决了易用性问题,尽管保留了菜单和软键来控制数字化示波器功能。通过将每条轨迹显示的点数增加四倍,波形平滑度得到了改善。您可以在文章的第 11 页找到有关架构和定制 IC 的详细信息,在第 36 页找到有关机械设计的详细信息,在第 21 页找到有关测试策略和测试系统的详细信息。验证而非特性分析的测试策略大大减少了需要测量的参数数量,而新的基于 FFT 的测量算法(第 29 页)进一步改进了仅数字万用表。生产测试系统部分内置,仅使用两个信号源和一个外部信号源。在第 41 页,您可以阅读有关确保 HP 54600 系列示波器符合电磁兼容性国际和军用标准(对于故障排除仪器而言很重要)的步骤。除了将波形样本转换为数字数据外,它还用于校准垂直增益。第 45 页的文章介绍了一种使用数字化示波器的存储和无限持久性能力的新方法。称为自动存储,它以全强度显示最新效果,以半强度显示较早的轨迹,以便用户可以更轻松地看到调整的效果。HP 54600 系列和其他 HP 数字化示波器中使用的模拟数字转换器是 16 通道、16 位、间接类型(第 48 页)。
模拟示波器在实验室分析应用中几乎已被数字或数字化示波器所取代,但它却拒绝消亡。由于其成本低、控制简单、显示实时,它仍然是工程师和技术人员进行故障排除的首选。惠普科罗拉多斯普林斯分部的工程师们将此视为一项挑战,着手设计一种数字化示波器,故障排除人员不仅会发现它与模拟示波器相当,而且实际上更喜欢它。HP 54600 系列数字化示波器具有通常与最常用于故障排除的全功能 100 MHz 模拟示波器相关的所有功能。它们具有相同的带宽 - 它们是 MHz - 并且在成本和易用性方面相当。虽然它们显然是连续示波器(显示的波形由点而不是连续的线组成),但 HP 调整系列示波器在大多数情况下对电路调整的响应速度与模拟示波器一样快,而且实际上在某些任务上表现更好。与模拟示波器相比,数字化示波器更受欢迎的原因在于只有数字化示波器才能提供的存储和测量功能。由于波形数据是在内存中采样和存储的,因此可以在触发事件之前和之后查看数据,以数学方式处理数据,并无限期地显示带有衰减的波形。从第 6 页的介绍性文章开始,到与模拟示波器的正面比较(用于故障排除)(第 57 页),本期共 9 篇文章讨论了 HP 54600 系列示波器的设计。他们描述了如何通过高水平的电路集成、使用表面贴装技术装载印刷电路板、具有成本效益的机械封装以及对制造过程的精心关注(包括专用测试和测试设备的成本)来解决成本问题。通过为主要控制功能提供专用旋钮而不是菜单驱动的软键用户界面,部分解决了易用性问题,尽管保留了菜单和软键来控制数字化示波器功能。通过新的架构和两个专用集成电路,显示速率能力提高到每秒一百万点,是其他数字化示波器的五十到一百倍。通过将每条轨迹显示的点数增加四倍,波形平滑度得到了改善。您将在第 11 页的文章、第 36 页的机械设计以及第 21 页的测试策略和测试系统中找到架构和定制 IC 的详细信息。验证而不是特性的大量测试策略大大减少了需要测量的参数数量,和新的基于 FFT 的测量算法(第 29 页)进一步改进了生产测试系统部分为内置式,只使用两个信号源和一个外部数字万用表。在第 41 页,您可以阅读有关确保 HP 54600 系列示波器符合电磁兼容性国际和军用标准的步骤——这对于故障排除仪器很重要。第 45 页的文章介绍了一种使用数字化示波器的存储和无限持久能力的新方法。它称为自动存储,以全强度显示最新效果,以半强度显示早期轨迹,以便用户更容易看到调整的效果。HP 54600 系列和其他 HP 数字化示波器中使用的模数转换器是 16 通道、16 位、间接类型(第 48 页)。除了将波形样本转换为数字数据之外,它还用于校准垂直增益。
模拟示波器在实验室分析应用中几乎已被数字或数字化示波器所取代,但它却拒绝消亡。由于其成本低、控制简单、显示实时,它仍然是工程师和技术人员进行故障排除的首选。惠普科罗拉多斯普林斯分部的工程师们将此视为一项挑战,着手设计一种数字化示波器,故障排除人员不仅会发现它与模拟示波器相当,而且实际上更喜欢它。HP 54600 系列数字化示波器具有通常与最常用于故障排除的全功能 100 MHz 模拟示波器相关的所有功能。它们具有相同的带宽 - 它们是 MHz - 并且在成本和易用性方面相当。虽然它们显然是连续示波器(显示的波形由点而不是连续的线组成),但 HP 调整系列示波器在大多数情况下对电路调整的响应速度与模拟示波器一样快,而且实际上在某些任务上表现更好。与模拟示波器相比,数字化示波器更受欢迎的原因在于只有数字化示波器才能提供的存储和测量功能。由于波形数据是在内存中采样和存储的,因此可以在触发事件之前和之后查看数据,以数学方式处理数据,并无限期地显示带有衰减的波形。从第 6 页的介绍性文章开始,到与模拟示波器的正面比较(用于故障排除)(第 57 页),本期共 9 篇文章讨论了 HP 54600 系列示波器的设计。他们描述了如何通过高水平的电路集成、使用表面贴装技术装载印刷电路板、具有成本效益的机械封装以及对制造过程的精心关注(包括专用测试和测试设备的成本)来解决成本问题。通过为主要控制功能提供专用旋钮而不是菜单驱动的软键用户界面,部分解决了易用性问题,尽管保留了菜单和软键来控制数字化示波器功能。通过新的架构和两个专用集成电路,显示速率能力提高到每秒一百万点,是其他数字化示波器的五十到一百倍。通过将每条轨迹显示的点数增加四倍,波形平滑度得到了改善。您将在第 11 页的文章、第 36 页的机械设计以及第 21 页的测试策略和测试系统中找到架构和定制 IC 的详细信息。验证而不是特性的大量测试策略大大减少了需要测量的参数数量,和新的基于 FFT 的测量算法(第 29 页)进一步改进了生产测试系统部分为内置式,只使用两个信号源和一个外部数字万用表。在第 41 页,您可以阅读有关确保 HP 54600 系列示波器符合电磁兼容性国际和军用标准的步骤——这对于故障排除仪器很重要。第 45 页的文章介绍了一种使用数字化示波器的存储和无限持久能力的新方法。它称为自动存储,以全强度显示最新效果,以半强度显示早期轨迹,以便用户更容易看到调整的效果。HP 54600 系列和其他 HP 数字化示波器中使用的模数转换器是 16 通道、16 位、间接类型(第 48 页)。除了将波形样本转换为数字数据之外,它还用于校准垂直增益。
模拟示波器在实验室分析应用中几乎被数字或数字化示波器所取代,但它却拒绝消亡。由于其成本低、控制简单易用和实时显示,它仍然是工程师和技术人员进行故障排除的首选。将此视为一项挑战,惠普科罗拉多斯普林斯分部的工程师着手设计一款数字化示波器,故障排除人员不仅会发现它与模拟示波器相当,而且实际上会更喜欢它。HP 54600 系列数字化示波器具有通常与最常用于故障排除的全功能 100 MHz 模拟示波器相关的所有功能。它们具有相同的带宽 - 它们是 MHz - 并且在成本和易用性方面具有可比性。虽然它们显然是连续示波器(显示的波形由点而不是连续的线组成),但 HP 调整系列示波器在大多数情况下对电路调整的响应速度与模拟示波器一样快,实际上在某些任务上表现更好。使它们优于模拟示波器(数字化示波器可与之媲美)的原因是只有数字化示波器才能提供的存储和测量功能阵列。由于波形数据是在内存中采样和存储的,因此可以在触发事件之前和之后查看数据,以数学方式处理数据,并以衰减的方式无限期地显示波形。从第 6 页的介绍性文章开始,到与模拟示波器进行故障排除的正面比较(第 57 页)结束,本期共有 9 篇文章涉及 HP 54600 系列示波器的设计。它们描述了如何通过高水平的电路集成、使用表面贴装技术装载印刷电路板、经济高效的机械封装以及对制造过程的精心关注(包括测试专用和测试设备的成本)来解决成本问题。通过为主要控制功能提供专用旋钮而不是菜单驱动的软键用户界面来解决易用性问题,尽管保留了菜单和软键来控制数字化示波器功能。通过采用新架构和两个专用集成电路,显示速率能力提高到每秒一百万点,是其他数字化示波器的五十到一百倍。通过将每条轨迹显示的点数增加四倍,波形平滑度得到改善。您可以在文章的第 11 页找到有关架构和定制 IC 的详细信息,在第 36 页找到有关机械设计的详细信息,在第 21 页找到有关测试策略和测试系统的详细信息。验证而非特性分析的测试策略大大减少了需要测量的参数数量,而新的基于 FFT 的测量算法(第 29 页)进一步改进了仅使用数字万用表的生产测试系统。在第 41 页,您可以阅读有关确保 HP 54600 系列示波器符合电磁兼容性国际和军用标准(对于故障排除仪器而言非常重要)的步骤。第 45 页的文章介绍了一种使用数字化示波器的存储和无限持久性能力的新方法。它被称为自动存储,以全强度显示最新效果,以半强度显示较早的轨迹,以便用户可以更轻松地看到调整的效果。HP 54600 系列和其他 HP 数字化示波器中使用的模数转换器是 16 通道、16 位、间接类型(第 48 页)。除了将波形样本转换为数字数据外,它还用于校准垂直增益。
模拟示波器在实验室分析应用中几乎已被数字或数字化示波器所取代,但它却拒绝消亡。由于其成本低、控制简单、显示实时,它仍然是工程师和技术人员进行故障排除的首选。惠普科罗拉多斯普林斯分部的工程师们将此视为一项挑战,着手设计一种数字化示波器,故障排除人员不仅会发现它与模拟示波器相当,而且实际上更喜欢它。HP 54600 系列数字化示波器具有通常与最常用于故障排除的全功能 100 MHz 模拟示波器相关的所有功能。它们具有相同的带宽 - 它们是 MHz - 并且在成本和易用性方面相当。虽然它们显然是连续示波器(显示的波形由点而不是连续的线组成),但 HP 调整系列示波器在大多数情况下对电路调整的响应速度与模拟示波器一样快,而且实际上在某些任务上表现更好。与模拟示波器相比,数字化示波器更受欢迎的原因在于只有数字化示波器才能提供的存储和测量功能。由于波形数据是在内存中采样和存储的,因此可以在触发事件之前和之后查看数据,以数学方式处理数据,并无限期地显示带有衰减的波形。从第 6 页的介绍性文章开始,到与模拟示波器的正面比较(用于故障排除)(第 57 页),本期共 9 篇文章讨论了 HP 54600 系列示波器的设计。他们描述了如何通过高水平的电路集成、使用表面贴装技术装载印刷电路板、具有成本效益的机械封装以及对制造过程的精心关注(包括专用测试和测试设备的成本)来解决成本问题。通过为主要控制功能提供专用旋钮而不是菜单驱动的软键用户界面,部分解决了易用性问题,尽管保留了菜单和软键来控制数字化示波器功能。通过新的架构和两个专用集成电路,显示速率能力提高到每秒一百万点,是其他数字化示波器的五十到一百倍。通过将每条轨迹显示的点数增加四倍,波形平滑度得到了改善。您将在第 11 页的文章、第 36 页的机械设计以及第 21 页的测试策略和测试系统中找到架构和定制 IC 的详细信息。验证而不是特性的大量测试策略大大减少了需要测量的参数数量,和新的基于 FFT 的测量算法(第 29 页)进一步改进了生产测试系统部分为内置式,只使用两个信号源和一个外部数字万用表。在第 41 页,您可以阅读有关确保 HP 54600 系列示波器符合电磁兼容性国际和军用标准的步骤——这对于故障排除仪器很重要。第 45 页的文章介绍了一种使用数字化示波器的存储和无限持久能力的新方法。它称为自动存储,以全强度显示最新效果,以半强度显示早期轨迹,以便用户更容易看到调整的效果。HP 54600 系列和其他 HP 数字化示波器中使用的模数转换器是 16 通道、16 位、间接类型(第 48 页)。除了将波形样本转换为数字数据之外,它还用于校准垂直增益。
数学是一种通用的语言,几个世纪以来一直着迷,其优雅令人着迷。从古希腊的几何形状到现代抽象代数,数学继续推动界限,扩大了人类的理解。某些问题特别具有挑战性,即使是几代人最聪明的数学家也迷住了。寻求解决这些“有史以来最艰难的数学问题”的追求反映了人类的好奇心,并开车揭示了数学秘密。这些神秘的难题通常是研究的基础,深入研究基本概念和未知领域。他们需要创新的思维,严格的证据和对数学结构的深刻理解。解决它们可能会导致物理,计算机科学,加密和经济学方面的突破性发现。粘土数学学院的千年奖项问题收藏集是最著名的“有史以来最艰难的数学问题”之一。以每种解决方案获得100万美元的奖金,这些问题吸引了数学家的全球关注。它们代表了现代数学最深刻的未解决问题,包括数字理论,几何和逻辑。由伯恩哈德·里曼(Bernhard Riemann)于1859年提出的Riemann假设探索了质数的分布,并指出所有非平凡的零位于特定的垂直线上。证明这将对理解素数具有重要意义。Yang -Mills的存在和质量差距问题涉及粒子物理学的基本理论,质疑理论中“质量差距”的存在。P与NP问题探讨了计算问题的可溶性和可验证性之间的关系,对计算机科学,加密和优化产生了深远的影响。Navier -Stokes的存在和平滑度问题解决了Navier -Stokes方程解决方案,这些解决方案在天气预报,流体动力学和其他领域中具有至关重要的应用。最后,Hodge猜想探讨了代数几何与拓扑之间的关系,试图确定是否可以将某些几何对象表示为简单的几何对象。追求解决复杂的数学问题对我们对几何,拓扑和整个宇宙的理解具有深远的影响。值得注意的例子包括由Grigori Perelman在2003年解决的Poincaré猜想,它阐明了空间的形状,以及与数字理论和密码学的密切相关的桦木和Swinnerton-Dyer猜想。其他具有挑战性的数学问题,例如Collatz猜想,Goldbach猜想和双重猜想,已经吸引了数十年的数学家。尽管它们很简单,但这些问题仍未解决,Collatz的猜想提出了一个过程,该过程将始终达到1,而不论起始整数如何。追求解决这些看似不可能的数学问题对我们对世界的理解产生了深远的影响。它提高了数学知识,启发创新,推动技术进步并扩展我们对宇宙的理解。旅程本身可以与目的地一样有价值,从而导致新发现和见解。人类精神无限的好奇心及其对揭开数学奥秘的持久追求仍然是这种智力挑战背后的推动力。数学不仅在于解决问题,还涉及探索新想法并对其美丽和复杂性有更深入的了解。许多数学家认为,庞加莱的猜想是有史以来最具挑战性和最重要的问题之一。花了一个多世纪的时间来证明并对拓扑和我们对空间的理解产生了深远的影响。尽管某些数学问题可能保证了解决方案,但许多未解决的问题继续激发创新并推动各个领域的进步。数学家采用多种技术和方法来解决困难问题,包括探索现有理论,开发新方法,与他人合作以及检验许多假设。学习未解决的数学问题的资源很丰富,包括在线平台,书籍和有关数学历史的文章。这些资源可以提供对著名的未解决问题(例如Continuum假设)的宝贵见解,该假设探讨了自然数和实数之间是否存在大小。数学家已经确定,连续假设(CH)是与基本数学公理有关的独立陈述。这意味着CH可以是真实和错误的,而不会产生任何逻辑上的不一致。尽管这种特殊性并不独特,但它是现代数学的特征,在学术界外可能并不广为人知。CH的一致性证明跨越了几十年,并被分为两个主要部分:证明CH与基本数学原理的兼容性,并证明其否定性相同。KurtGödel通过他的1938年可构造宇宙理论为第一部分做出了重大贡献,该理论仍然是设定理论教育的基础概念。证明的后半部分是由保罗·科恩(Paul Cohen)解决的。然而,证明的两半都需要在研究生层面上对集合理论有深入的理解,这解释了为什么这个迷人的故事在数学社区之外仍未知。