在量子多体物理学中,基态上方谱隙的存在对基态关联和纠缠特性具有重大影响 [1, 2, 3, 4]。谱隙的闭合也与拓扑量子相变的发生密切相关,因为量子相的现代定义依赖于通过 Hastings 的准绝热演化概念存在的带隙汉密尔顿量路径 [5, 6, 7]。在汉密尔顿量的各种“局部”扰动下谱隙的稳定性是一个活跃的研究领域 [8, 9, 10, 11, 12],为了利用这些稳定性结果,拥有广泛的带隙汉密尔顿量网络用于进一步的稳定性分析当然是有益的。一般来说,有关谱隙的问题是物理学中许多最具挑战性的未决问题的核心。两个例子是霍尔丹的猜想,即反铁磁海森堡链的自旋值为整数时存在谱隙[13,14],以及杨-米尔斯质量间隙,这是一个千年难题。有关谱隙相关性的更多背景信息,请参阅[15,7]。鉴于谱隙的存在具有很强的物理意义,人们对确定严格推导谱隙的数学技术有着浓厚的兴趣。已经发现,除极少数例外,只有特殊的无挫折哈密顿量才适合严格推导。
量子游动自诞生以来就被用于开发量子算法,可以看作是通常电路模型的替代品;将稀疏图上的单粒子量子游动与线格上的双粒子散射相结合就足以执行通用量子计算。在这项工作中,我们解决了一类不具有平移不变性的相互作用的线格上的双粒子散射问题,恢复了 Bose-Hubbard 相互作用作为极限情况。由于其通用性,我们的系统方法为解决一般图上的更一般的多粒子散射问题奠定了基础,这反过来又可以设计不同或更简单的量子门和小工具。作为这项工作的结果,我们表明,当相互作用仅作用于线图的一小部分时,可以高保真地实现 CPHASE 门。
对于有偏 Pauli 噪声,Kitaev 表面码的各种实现都表现得出奇的好。受这些潜在收益的吸引,我们研究了通过应用单量子比特 Clifferd 算子从表面码中获得的 Clifferd 变形表面码 (CDSC) 的性能。我们首先分析 3 × 3 方格上的 CDSC,发现根据噪声偏差,它们的逻辑错误率可能会相差几个数量级。为了解释观察到的行为,我们引入了有效距离 d ′ ,它可以缩短为无偏噪声的标准距离。为了研究热力学极限下的 CDSC 性能,我们专注于随机 CDSC。利用量子码的统计力学映射,我们发现了一个相图,该相图描述了在无限偏差下具有 50% 阈值的随机 CDSC 家族。在高阈值区域,我们进一步证明,典型代码实现在有限偏差下优于最著名的平移不变代码的阈值和亚阈值逻辑错误率。我们通过构建属于高性能随机 CDSC 系列的平移不变 CDSC 来证明这些随机 CDSC 系列的实际相关性。我们还表明,我们的平移不变 CDSC 优于众所周知的平移不变 CDSC,例如 XZZX 和 XY 代码。
由 K 生成的平移幺正为 ∥ UK,δθ ̺U † K,δθ − ̺ ∥ 1 = ∥ [ ̺, K ] ∥ 1 δθ + o ( δθ 2 )。这
图 2. 0.5 毫米 PE874 打印线 (a) 较小区域的地形图,应变达到 80%。虚线轮廓内的区域被选中用于 (b) 3D 渲染。 (c) 同一样品在 50% 和 80% 应变之间循环 100 次后的 2D 轮廓测量场。 (d) 平移图关联插图 (a) 和 (c) 中显示的循环前后样品扫描的位移。请注意,平移几乎均匀,幅度约为 25 μm。结果
图 3:在保持所有其他变量不变的情况下,对一个潜在变量进行置换对模拟晶格重建的影响。红色虚线绘制在每个面板的相同像素位置,作为比较晶格位置的视觉辅助。置换的潜在变量是在模拟晶格的 a) y 轴平移、b) x 轴平移、c) 顺时针旋转置换过程中显示最大方差的变量。d) 在模拟晶格的简单几何置换中没有显示大方差但能够“擦除”晶格的潜在变量。
对于具有局部平移不变哈密顿量的任意空间维度的量子自旋系统,我们证明,如果状态是平移不变和空间遍历的,则通过热力学可行的一类量子动力学(称为热操作)从一个量子态到另一个量子态的渐近状态转换完全可以用 Kullback-Leibler (KL) 发散率来表征。我们的证明由两部分组成,用量子信息论的一个分支资源理论来表述。首先,我们证明,任何状态,对于这些状态,最小和最大 Rényi 发散度近似地坍缩为一个值,都可以在小的量子相干源的帮助下通过热操作近似可逆地相互转换。其次,我们证明,对于任何平移不变的遍历状态,这些发散度渐近地坍缩为 KL 发散率。我们通过对量子 Stein 引理的推广来证明这一点,该引理适用于独立同分布 (iid) 情况以外的量子假设检验。我们的结果表明,KL 发散率可作为热力学势,在热力学极限下,包括非平衡和完全量子情况,提供量子多体系统遍历态热力学可转换性的完整表征。