摘要:本文介绍了一款专为学习空间对称群 (SGS) 而设计的数字应用程序。它教您如何识别对称元素执行的操作,包括点(或 2D)运算符(正确和不正确的旋转,包括镜像、反转和其他旋转版本)和空间(或 3D)运算符(螺旋轴和滑移平面),以及它们与晶格平移的组合。该软件应用 3D 空间视觉来识别与所提出的结构模型兼容的对称元素。使用国际公认的表示符号。解决与所提出的模型一致的晶体系统、类和空间群。在单斜系统中考虑了两种设置。该应用程序会自我评估和评估所获得的知识,允许重新完成每个练习,直到正确完成并遵循适当的建议。此应用程序是 SGS 学习的有用且易于使用的工具。它针对的是晶体学的初学者,具有关于对称元素、布拉维晶格、晶体类别和壁纸组的基本知识。
无论坍缩物体的质量、电荷和角动量是多少,坍缩的最终状态仅由物体的质量、电荷和角动量来表征。由于黑洞会向渐近观察者隐藏经典信息,所以这仍然是可以接受的。然而,它在半经典背景下的影响却令人担忧,并引起了所谓的信息丢失悖论。[4] 首次研究了经典黑洞背景中量子场的散射。结果表明,在 I − 处制备的初始真空状态将在黑洞几何中演化为未来零无穷大 I + 处的热状态。因此,存在非幺正演化和信息丢失。我们可以在坍缩过程的背景下想象这一点,该过程提供经典背景和在 I − 处在真空中制备的量子态。 I + 处的外态是热态,这假设意味着黑洞正在发射热辐射,这会导致其质量、角动量等减少,并最终导致其完全蒸发。因此,作为坍缩和随后蒸发的最终状态,人们在 I + 处发现黑洞奇点和热辐射。有关坍缩物质的信息丢失了。无毛发猜想在这里的作用是,热态仅由稳态黑洞的非平凡毛发来表征。因此,一种可能的解决办法可能是如 [ 5 ] 中所建议的,黑洞上存在更多的毛发。众所周知,黑洞的质量、角动量和电荷是与规范对称性相关的守恒电荷,当存在边界时,规范对称性就会变成真正的对称性。因此,人们可以通过搜索大于度量等距群的对称性群来寻找毛发。零无穷处渐近平坦时空的例子 [ 6 – 8 ]、渐近局部反德西特时空的例子 [ 9 ],以及对近“视界”对称性的探索 [ 10 – 12 ] 告诉我们,情况确实如此。[ 5 ] 中的提议完全源于零无穷处渐近平坦时空的经验,探索了黑洞视界的对称性。对于 I + ( I − ),对称群(定义为保持度量上的衰减条件的微分同胚)变为无限维,即所谓的 BMS + ( BMS − ),它是超平移的无限维阿贝尔群与 Lorentz 群(或其推广,即 Witt 代数的两个副本 [ 13 ] 或球面上的光滑微分同胚代数 [ 14 , 15 ])的半直积。尽管黑洞视界与 I + 或 I − 相似,但由于零生成器的非亲和性,尤其是在非极值情况下,该群可能无法实现为对称性。然而,超平移的李群理想却是保持基本视界结构的对称性。超平移黑洞可能有两种含义。它可能是近视界超平移 [ 5 ],也可能是作用于全局黑洞解的 I + 和 I − 处的渐近超平移 [ 16 , 17 ]。这两个概念是否是同一个概念还远未可知,正是因为近视界超平移生成器在本体中的扩展可能与 I − 处的超平移生成器不匹配。在这里,我们将
摘要:昆虫利用腹部和其他附肢的动态铰接和驱动来增强气动飞行控制。飞行中的这些动态现象有许多用途,包括保持平衡、增强稳定性和扩展机动性。生物学家已经观察和测量了这些行为,但尚未在飞行动力学框架中很好地建模。生物附肢通常相对较大,以旋转方式驱动,并具有多种生物功能。用于飞行控制的技术移动质量往往是紧凑的、平移的、内部安装的并且专用于该任务。生物飞行器的许多飞行特性远远超过任何同等规模的技术飞行器。支持现代控制技术以探索和管理这些执行器功能的数学工具可能会开启实现敏捷性的新机会。这里开发的多体飞机飞行动力学的紧凑张量模型允许对具有机翼和任意数量的理想附肢质量的仿生飞机进行统一的动力学和气动模拟和控制。演示的飞机模型是一架蜻蜓状的固定翼飞机。移动腹部的控制效果与控制面相当,横向腹部运动代替气动舵以实现协调转弯。垂直机身运动实现了与升降舵相同的效果,并且包括上下可能有用的瞬态扭矩反应。当在控制解决方案中同时使用移动质量和控制面时,可实现最佳性能。使用本文介绍的多体飞行动力学模型设计的现代最优控制器可以管理机身驱动与传统控制面相结合的飞机。
指挥和控制是所有分布式战术行动(如救援行动和军事行动)的核心。它发生在一个由人类和人工制品组成的复杂系统中,力求实现共同目标。指挥和控制的复杂性来自多个方面,包括动态性、不确定性、风险、时间压力、反馈延迟和相互依赖性。基于这种复杂性,本论文探讨了指挥和控制研究中两个重要且相关的问题领域。从总体上讲,本论文试图解决指挥和控制操作员面临的问题以及相关系统开发过程中设计师面临的问题。我们研究了操作员在屏幕面积有限的地理信息系统中使用大地图时忽视整体视角的具体问题。为了解决这个问题,我们提出了高精度输入技术,以减少触摸屏系统中缩放和平移的需要,以及信息单元表示,以更好地利用可用的屏幕区域。实验研究的结果表明,所提出的输入技术与最先进的技术一样快速和准确,而无需借助缩放。此外,原型设计的结果表明,所提出的单位表示减少了屏幕上的混乱,并利用了屏幕外的单位来更好地利用宝贵的屏幕区域。开发指挥和控制系统是一项复杂的任务,有几个陷阱,包括陷入详尽的分析和对理性方法的过度依赖。在本文中,我们采用了一个面向设计的研究框架,该框架承认创造性和务实的因素来处理这些陷阱。我们的方法采用重建和探索分布式战术行动任务历史的方法作为指挥和控制分析的手段。为了支持在我们的框架内对任务历史进行探索性分析,我们提出了用于通信分析的工具和用于管理元数据(如反思、问题、假设和专家评论)的工具。通过将这些工具与来自实时战术行动的真实数据一起使用,我们表明它们可以管理大量数据、保存上下文数据、支持数据内导航、使原始数据易于访问以及加强元数据与支持原始数据之间的联系。此外,我们表明,通过使用这些工具,多位分析师、专家和研究人员可以在复杂场景的协作和探索性调查中就数据和元数据交换评论。