复杂的系统科学最近将重点转移到包括建模,模拟和行为控制。在机器人操作系统(ROS)上构建的有效仿真软件用于机器人开发,以促进模拟环境与控制行为的硬件测试之间的平稳过渡。在本文中,我们演示了如何使用同时定位和映射(SLAM)算法来允许机器人自动导航。凉亭用于模拟机器人,RVIZ用于可视化模拟数据。G映射软件包用于使用来自各种传感器(包括激光和探光度)收集的数据来创建地图。为了测试和实施自主导航,在凉亭生成的模拟环境中使用了海龟机器人。我们认为,使用这些重要工具对ROS进行的其他研究可能会导致对执行机器人技术测试的更多采用,进一步的评估自动化和有效的机器人系统。
摘要:经典物理学中的粒子是可区分的物体,可以根据其独特的物理性质单独挑选出来。相比之下,在物理哲学中,标准观点是同一类型的粒子(“相同粒子”)彼此完全无法区分,缺乏同一性。这种标准观点是有问题的:粒子不可区分性不仅与普通语言和经典物理理论中“粒子”的含义不相容,而且与该术语在当今物理学实践中的实际用法也不相容。此外,不可区分性理论阻碍了从量子粒子到我们通常在量子力学的经典极限中理解的“粒子”的平稳过渡。在阐述早期工作的基础上,我们在此分析了标准观点的前提,并讨论了避免这些问题和类似问题的替代方法。事实证明,这种替代方法与量子信息理论中的最新讨论有关。
该项目旨在利用 DIgSILENT PowerFactory 软件开发聚合物电解质膜 (PEM) 制氢厂的动态模型,以满足英国电力系统规划、稳定性分析和运行研究的关键需求。英国政府的目标是到 2030 年实现 10 GW 的低碳氢气产量,因此了解氢气技术与电网的整合和相互作用至关重要。该项目将专注于对电解器和燃料电池厂进行建模,分析其可扩展性,并开发用于电网整合的控制系统。通过均方根 (RMS) 和电磁瞬变 (EMT) 模拟,该项目将研究制氢厂对电网稳定性的影响,促进向低碳氢气生产的平稳过渡。该项目符合英国的净零排放目标,可增强能源安全、实现脱碳,并支持零碳能源系统转型的更广泛战略。
摘要 机器学习方法在医疗保健研究中越来越受欢迎。这种向综合数据科学方法的转变需要对现有的医疗保健数据分析师队伍进行专业发展。为了促进这种平稳过渡,需要开发教育资源。真实的医疗保健数据集对于医疗保健数据分析和培训目的至关重要,但它存在许多障碍,包括财务、道德和患者保密问题。模拟现实世界复杂性的合成数据集提供了简单的解决方案。所呈现的合成数据集反映了成年人口中心脏病发作和中风的常规收集的初级保健数据。使用此合成数据集的培训体验得到了提升,因为数据包含了常规收集的初级保健系统中遇到的许多实际挑战,例如缺失数据、信息审查、交互、变量不相关性和噪声。
碳排放对环境的影响使得一些可持续发展目标难以实现。尽管国际机构做出了努力,但由于转型尚未完成,仍然需要解决这个问题。因此,本研究调查了 1998 年至 2021 年期间全球化、经济增长、金融包容性、可再生能源和政府机构对碳排放的影响。为了能够评估变量的直接和间接影响,采用了偏最小二乘结构方程模型,其中可再生能源作为中介,并采用两阶段最小二乘法进行稳健性检验。研究结果表明,全球化促进了可再生能源的使用,但金融包容性对可再生能源的使用有负面影响。可再生能源对碳排放有直接的积极和显著影响。金融包容性对碳排放有间接的负面和显著影响。结果表明,更多的金融包容性启蒙将有助于平稳过渡,并且应该在执行所有环境法规的前提下接受全球化。
董事会的主要职责之一是监督高管继任管理,以确保我们拥有一支合格的管理团队来执行公司的战略,并在组织变革发生时支持平稳过渡。2023 年,董事会继续执行其高管继任计划,并于 2023 年 1 月宣布公司新的精简组织结构。此外,2023 年 3 月,董事会宣布任命 Christopher Foster 为执行副总裁兼首席财务官。2023 年 10 月,董事会宣布 Dave Lesar 退休,并任命 Jason Wells 为总裁兼首席执行官,均于 2024 年 1 月 5 日生效。我们知道,当我们向 Dave 在过去三年多的时间里所展现的领导力、远见和指导表示衷心感谢时,我们代表了 CenterPoint Energy 的所有人。在 Jason 的领导下以及董事会的全力支持下,CenterPoint Energy 继续专注于执行其长期战略计划。
I. 将太阳能园区纳入这些规定:将太阳能园区纳入有关太阳能和非太阳能时段连接的规定对于确保公平高效地利用输电网络至关重要。太阳能园区是可再生能源发电的中心,通常会有多家开发商参与,从而产生大量发电量。但是,由于缺乏具体规定来解决此类项目在太阳能和非太阳能时段的连接问题,可能会造成运营上的模糊性和效率低下,尤其是在将太阳能和非太阳能整合到同一个网络框架内时。II. 关于 3 个月申请期的澄清和建议:法规中提到的 3 个月申请期的起点不明确,需要澄清。为确保平稳过渡和足够的合规时间,建议现有的太阳能园区在 3 个月申请期的起点之前完成申请。
通过涵盖功能和技术考虑因素,系统设计提供了如何实现系统的整体视图。它深入到系统的体系结构,数据结构,算法和接口。这种深入的探索使开发人员可以掌握所涉及的复杂性,并在整个开发过程中做出明智的决定。系统设计的一个关键优势是它优化资源分配的能力。有了清晰的路线图,开发人员可以优先考虑任务并战略分配资源。此优先级确保关注关键组成部分和功能,从而导致更有效,更简化的发展过程。本质上,系统设计是开发过程中不可替代的一步。它提供了全面的路线图,促进了有效的资源管理,并促进了从概念到创建的平稳过渡。此外,系统设计标志着概念转化为现实的关键点。它弥合了构想与实施之间的差距,提供了指导开发人员的切实计划。此阶段使他们能够做出明智的决定,预测潜在的挑战并积极开发解决方案。
在从资源到最终能源产品的道路上,一方面有许多技术用于原料制备,另一方面用于转化为最终产品,即电力、热能或运输燃料。由于这种多功能性,这里采用综合方法来增强协同效应和规模经济,实现价值链中的经济效益,最终降低生产成本并优化所有生物能源产品的温室气体性能。虽然成本结构受原料成本的严重影响,但这些是市场变量,因此本文件仅关注转化步骤的研发需求和目标。就数量而言,生物燃料目前是运输中化石燃料的主要替代品。特别是直接替代型生物燃料允许现有运输车队和燃料基础设施平稳过渡到低化石碳燃料。资源效率和可持续性优化对基于生物质残留物和木质纤维素能源作物和废物的先进生物燃料寄予厚望,这些燃料将在欧盟 2020 年后能源和气候政策框架中发挥越来越重要的作用。这也是本实施计划针对运输生物燃料的重点关注内容。
行为的连续性要求动物在相互排斥的行为状态之间平稳过渡。控制这些转变的神经原理尚不清楚。秀丽隐杆线虫自发地在两个相反的运动状态(向前和向后运动)之间切换,这种现象被认为反映了中间神经元 AVB 和 AVA 之间的相互抑制。在这里,我们报告说,自发运动及其相应的运动回路不是单独控制的。AVA 和 AVB 既不是功能等效的,也不是严格相互抑制的。AVA 而不是 AVB 保持去极化的膜电位。虽然 AVA 在快速时间尺度上阶段性地抑制了正向促进中间神经元 AVB,但它在较长的时间尺度上保持了对 AVB 的紧张性、突触外兴奋。我们提出,AVA 在不同时间尺度上具有相反极性的紧张性和阶段性活动,充当主神经元,打破了底层正向和反向运动回路之间的对称性。该主神经元模型为由互斥的运动状态组成的持续运动提供了一种简约的解决方案。