摘要 快速生长表型是通过最佳转录组分配实现的,其中细胞必须在不同功能之间平衡资源分配的权衡。大肠杆菌中的一种应激准备和无节制生长之间的平衡被称为恐惧与贪婪 (f/g) 权衡。在适应快速生长过程中观察到的两种特定 RNA 聚合酶 (RNAP) 突变先前已被证明会影响 f/g 权衡,这表明遗传适应可能已准备好控制 f/g 资源分配。在这里,我们对不同条件下 f/g 权衡的遗传控制进行了一项大大扩展的研究。我们引入了在适应性实验室进化 (ALE) 期间通常获得的 12 种 RNA 聚合酶 (RNAP) 突变,并获得了每种突变的表达谱。我们发现这些单个 RNAP 突变菌株导致 f/g 权衡发生巨大转变,主要发生在 RpoS 调节子和核糖体基因中,可能是通过修改 RNAP-DNA 相互作用实现的。其中两个突变还导致了条件特异性转录适应。虽然这种权衡以前以 RpoS 调节子和核糖体表达为特征,但我们发现 GAD 调节子在应激准备中起着重要作用,而 ppGpp 在翻译活动中起着重要作用,从而扩大了权衡的范围。系统发育分析发现,权衡的贪婪相关基因存在于许多细菌物种中。结果表明,f/g 权衡代表了细菌转录组分配的一般原则,其中小的遗传变化可导致对生长条件的巨大表型适应。
将人脑建模为复杂网络提供了强大的数学框架来描述大脑的结构和功能架构。在过去十年中,非侵入性神经成像技术和图论方法的结合使我们能够在宏观层面上绘制人类的结构和功能连接模式(即连接组)。其中最具影响力的发现之一是人脑网络表现出显著的小世界组织。人脑中的这种网络架构有利于以较低的布线和能源成本实现有效的信息分离和整合,这可能是成本效益平衡压力下的自然选择的结果。此外,小世界组织在正常发育和衰老过程中不断发生变化,并在神经和精神疾病中表现出显著的变化。在这篇综述中,我们概述了人脑网络中小世界架构的最新进展,并强调了其在认知神经科学、医学和工程等多学科领域的潜在影响和应用。最后,我们强调了这一快速发展的领域中几个具有挑战性的问题以及未来研究的领域。
高熵合金(HEA)最近成为了一类新的材料,由于其有趣的吸附性能,它们引起了人们对氢储存应用的兴趣。与常规合金不同,HEAS由五个或更多的化学元素组成,比例可能在5个范围内。%至35 at。%。所得的高混合熵促进了多元素实心溶液相的形成,通常表现出简单的晶体学结构(BCC,FCC或HCP)。这一独特的功能增强了HEAS吸收和吸收氢的能力,并使它们成为氢存储应用的有希望的候选者。我们的工作针对由Ti,V,Cr,Mn和/或Fe组成的HEA。在合理的压力和温度条件下,这些合金在氢吸附性能方面已经显示出有望[MAR23]。然而,研究的组合物表现出不同晶体学结构的几个阶段的混合,从而阻止了对合金特性的结构影响。因此,我们工作的目的是探索其他化学成分,以便可能i)合成单相合金和ii)在环境温度下调整平衡压力。目前的贡献侧重于三种合金,即Ti 25 V 35 Cr 32 Mn 8,Ti 25 V 35 Cr 34 Fe 6和Ti 23 V 37 Cr 30 Mn 5 Fe 5。X射线和中子衍射的互补性,与细MEB-EDX分析相结合,阐明了在晶体学结构和化学组成方面,阐明了微米尺度上存在的细微差异。通过Sievert的体积方法衡量的压力组分等温线对这些研究进行了补充,证实了这些合金对潜在应用的极大兴趣,在298 K.