此外,一些研究应用了集合技术来改善结果。参考[6]进行了几种ML算法的比较:逻辑回归,线性判别分析,k-neart邻居,决策树,支持向量机,Adaboost分类器,梯度增强分类器,随机森林分类器,随机森林分类器和额外的树分类器。使用PIMA印度糖尿病数据集和早期糖尿病风险预测数据集评估了这些算法。与两个数据集中的其他机器学习算法相比,整体机器学习算法提供了更好的分类精度。在其他研究[7]中,使用了决策树,SVM,随机森林,逻辑回归,KNN和各种集合技术。该研究采用了PIMA印度糖尿病数据集和203名来自孟加拉国的女性患者的样本。此外,采用了Smote和Adasyn方法来解决阶级不平衡问题。XGBoost分类器与Adasyn方法结合使用,得出的结果最佳,获得了81%的精度,F1系数为0.81,AUC为0.84。
摘要:基于P300的大脑 - 计算机界面(BCIS)中使用的奇数范式本质上构成了目标刺激和非目标刺激之间的数据不平衡问题。数据不平衡会导致过度解决问题,从而导致分类性能差。本研究的目的是通过通过抽样技术解决此数据不平衡问题来提高BCI性能。将采样技术应用于控制门锁的15个受试者的BCI数据,15个受试者是电灯,14名受试者是蓝牙扬声器。我们探索了两类采样技术:过采样和不足采样。过采样技术,包括随机过度采样,合成少数族裔过采样技术(SMOTE),边界效果,支持矢量机(SVM)SMOTE和自适应合成抽样,用于增加目标刺激类别的样品数量。不足的采样技术,包括随机不足采样,邻里清洁规则,Tomek的链接和加权式采样袋,用于降低非目标刺激的班级大小。通过SVM分类器对过度或不足的数据进行了分类。总体而言,某些过采样技术改善了BCI性能,而不足采样技术通常会降低性能。尤其是,使用边界效果产生了所有三种电器的最高精度(87.27%)和信息传输率(8.82 bpm)。此外,边缘效果会提高性能,尤其是对于表现不佳的人。进一步的分析表明,边界效果通过在目标类别中产生更多的支持向量并扩大边缘来改善SVM。然而,边界效果与应用SVM加权正规化参数的方法之间的准确性没有差异。我们的结果表明,尽管过采样提高了基于P300的BCI的性能,但它不仅是过采样技术的效果,而且是解决数据不平衡问题的效果。
摘要:生产线平衡是一种有效的工具,可以提高装配线的生产能力,同时减少瓶颈、周期时间。生产线平衡是将操作分配给装配线上的工作站的问题,这样分配在某种意义上是最优的。本项目主要关注通过生产线平衡减少瓶颈活动、周期时间和每个工作站的工作量分配来提高单一型号装配线的整体效率,使用生产线平衡技术,主要是工作共享方法。所采用的方法包括计算流程的周期时间、识别瓶颈活动、计算工作站的总工作量和使用代码块(c++)软件在每个工作站上分配工作量,还通过生产线平衡重新设计布局,以提高生产线的效率和提高整体生产率。关键词-瓶颈、效率、布局、生产线平衡、工作共享方法。