摘要。在依次连接的细胞之间达到平衡的过程对于预言过度充电或放电至关重要,并且还可以改善总体能量容量。本文讨论了用于在电池管理系统(BMS)中均衡单元充电创建的各种算法。适当的细胞平衡是维护锂离子电池(LIB)包的必不可少的。在BMS中,识别故障至关重要。这涵盖了DECTECT,隔离和估计故障。为了防止电池在不安全的范围内运行,至关重要的是要确保电流,电压和温度传感器的准确功能。准确的故障诊断对于电池管理系统的最佳操作至关重要。在电动汽车电池管理系统的背景下,非常依赖电流,电压和温度的精确测量,以估计充电状态(SOC)和整体电池健康。迅速识别早期失败可以减轻安全危害并最大程度地减少损害。neverther,有效地使用电子车辆的真实操作数据来确定这些初始失败仍然是一项复杂的任务。本文介绍了用于检测与平衡相关故障的不同算法的分析,涵盖了基于模型和不依赖模型的方法的两种方法。在此文档中还讨论了评估算法的优势和缺点,以及在平衡和故障检测领域的即将到来的挑战。
图1研究设计和分析概述。(a)直接加人是18个月的生活方式干预临床试验。参与者被随机分配给三个干预组之一:健康饮食指南(HDG),该指南(HDG)是一个活跃的对照组,地中海饮食(MED)和绿色MED。将所有干预组与体育活动(PA)结合,并在干预前后评估参与者(相应地,T0和T18)。评估包括人体测量,血液生物标志物,脂肪沉积和脑成像。有关更多详细信息,请参见第2.1.2节。(b)建议的集合体系结构由10个CNN回归器组成,这些回归器由线性回归结合到代表BMI的单个标量。然后,根据预测提取显着图,以揭示促进大脑区域。(c)子研究设计。建议的模型在公共数据集的整理中进行了培训和验证,以预测BMI,后来在独立的测试集以及T0和T18的Direct-Plus数据集中进行了测试。
模型投资组合服务不是金融工具。投资组合将由金融工具组成,当将其视为模型投资组合服务时,目标市场与零售客户的需求保持一致。本出版物是营销材料。仅用于信息目的。本文提供的信息仅用于说明目的,并且没有提供足够的信息来做出明智的投资决定。本文档不是故意的,不应将其解释为要约,征集或建议以购买或出售任何特定投资或参与任何投资(或其他)策略。建议潜在的投资者应寻求有关其财务顾问任何投资适用性的建议。潜在的投资者应意识到,过去的绩效并不是未来绩效的迹象,投资的价值和从中获得的收入可能会波动,他们可能无法收回最初投资的金额。投资的税收待遇取决于每个投资者的个人情况,并且会发生税收立法的变化。与此模型投资组合相关联的实际投资组合的性能可能与本文显示的模型投资组合的性能有所不同,这是因为初始投资的计时或重新平衡差异的差异是由于投资平台上的最小交易规模限制而导致的。正在进行的费用数字是可变的,仅为目的。此FactSheet中的信息仅用于私人流通,尽管认为这是正确的,但不能保证它可以保证。没有陈述或保证(明确或其他),以了解本Factsheet和LGT Wealth Management UK LLP(“ LGT Wealth Management”)中包含的信息的准确性或完整性及其合作伙伴和员工对您对您所包含的信息的后果不承担任何责任。
首次实现了聚变“科学盈亏平衡”(即,目标增益 G 目标为 1,总聚变能量输出 > 激光能量输入)(此处,G 目标 ∼ 1.5)。本文报告了设计变更的物理原理,这些变更导致在国家点火装置上使用激光间接驱动进行首次受控聚变实验,以产生大于 1 的目标增益,并超过了之前根据劳森标准获得的点火所需的条件。成功的关键因素在于减少“滑行时间”(激光脉冲结束和内爆峰值压缩之间的持续时间)和最大化传递到“热点”(聚变燃料的产量产生部分)的内部能量。解释了滑行时间与动能向内能的最大效率转化之间的联系。不对称和流体动力学诱导混合的能量学后果是高产量大半径内爆设计实验和设计策略的一部分。本文展示了不对称和混合如何合并为一个关键关系。结果表明,混合会产生与内爆不对称影响类似的动能成本,从而将点火阈值转移到更高的内爆动能——这一因素通常不包含在广义劳森标准的大多数陈述中,但关键的必要修改显然已经显现出来。
1。引言硅光子设备由于其吸引人的特性而变得越来越流行。小尺寸,较大的折射率对比度和CMOS兼容性是硅光子设备的特性,它们使其成为多个行业的选择设备 - 电信,生物医学等[1,2]。使用最广泛的硅光子设备组件之一是Mach-Zehnder干涉仪(MZI)。在硅平台上实施的Mach-Zehnder干涉仪是各种应用的关键元素,从电信(用于光子波导开关和光子调制器)到感应,神经网络,量子和信号处理的关键元素[3-11]。MZI的效用源于其干涉特性,这是通过在MZI的两个臂之间创建相对相移来实现的。使用相位变速器或通过使MZI的两个臂的光路长度不平等来实现此相移。MZI配置,其中MZI的两个臂都不相等,称为MZI不平衡。不平衡的MZI已用于位移传感[12],气体传感[13],模式切换[14]和调制[15]。在本文中,我们展示了我们建模,模拟和随后制造的MZI设计不平衡的设计。我们检查了几种不平衡的MZI设计,并分析了设备的仿真和实验传输特性。我们阐明了波导建模的过程并进行了分析,以补偿制造变化并详细介绍了一些数据分析。
肌肉减少症(肌肉质量,力量和骨骼肌功能的丧失)增加了老年人群的死亡率和住院风险。al虽然知道2型糖尿病(T2DM)的老年人患Dynapenia和Sarcopenia的风险较高,但很少有研究研究中年种群中的这些疾病。这项研究的目的是研究T2DM,其持续时间,蛋白尿的存在和血糖控制是否与成年人中的肌肉减少症及其成分有关。横断面分析是基于巴西成人卫生纵向研究的访问2的数据(2012-2014)。2018年老年人标准的欧洲肌肉减少症工作组用于定义dynapenia,低阑尾肌肉质量(LAMM)和肌肉减少症(缺乏/可能/确认)。解释变量为:T2DM; T2DM的持续时间; T2DM根据蛋白尿的存在; T2DM患者中的血糖控制(HBA1C <7%)。总共包括12,132名参与者(平均年龄= 55.5,SD:8.9岁)。在T2DM,T2DM持续时间为5年至10年的T2DM持续时间和无蛋白尿的T2DM的lamm的优势比更大。的机会较高。变量T2DM,T2DM≥10年,T2DM具有白蛋白URIA的T2DM增加了可能的肌肉减少症的几率,而T2DM持续时间从5年增加到10年,增加了确认的Sarcopenia的几率。结果支持经常监测T2DM个体的肌肉骨骼质量和强度以防止肌肉减少症和相关结果的重要性。
简介:肥胖可能导致相关的高风险疾病,例如心血管疾病,糖尿病,高血压,中风和癌症。肥胖是由于饮食过多而导致的。胰腺脂肪酶(PL)是一种酶,在将脂肪水解为单酰甘油和脂肪酸中起主要作用,可以吸收到小肠中。治疗肥胖症的一种策略之一是通过PL抑制减少脂肪的吸收。本研究旨在寻找能够减少脂肪吸收的选定马来西亚植物的潜在PL抑制剂。方法:使用Autodock Vina实际上筛选了潜在的PL抑制剂,以针对五种选定的柑橘类植物的植物化学化合物,即c。c.aurantifolia(C。aurantifolia),C。Grandis,C。Grandis,C。Medica,C。Medica,C。Hystrix和C. hystrix和C. microcarpa。结果:根据结合到三组的自由能进行分类:高,中和低抑制作用。八种化合物对PL表现出很高的活性。柑橘大的贡献最多的化合物,其次是C. Medica,C。Microcarpa,C。aurantifolia和C. hystrix。为了验证这些发现,对这些柑橘植物各个部分的15种甲醇提取物进行了体外生物测定。值得注意的是,C. medica的果实提取物在62.59%的情况下表现出最有效的PL抑制作用,这可能是由于存在二胺-6-C-葡萄糖苷。结论:总而言之,源自选定的柑橘类植物的小分子的虚拟筛选提供了对分子对接的有价值的见解,而C. medica则作为潜在的抗肥胖植物出现。
由于电流流入BQ7690X上的细胞输入引脚,而平衡处于活动状态时,因此在不暂时禁用平衡的情况下无法进行细胞电压测量。因此,在平衡过程中,修改了设备的细胞电压测量和评估细胞电压保护的时机。在任何单元的平衡都处于活动状态时,在测量细胞电压以及共享插槽测量过程中,在每个ADSCAN中暂时禁用平衡FET。为了满足细胞平衡进行定期测量的需求,设置:配置:电源config [cb_loop_slow [1:0]]配置位在细胞平衡处于活动状态时修改单元电压测量时间,以增加平均平衡电流。此修改涉及替换具有相同宽度的空闲插槽所选ADSCAN中的测量值,以使平衡保持较高的时间百分比。
幸运的是,尽管全球动荡,亚太地区仍在风暴中。在接下来的十年中,全球70%的增长将来自亚太地区。该地区将于2030年拥有最高的消费者支出,并且是一些最大的消费市场。南亚和东南亚正在经历惊人的消费市场增长,到2030年,就印度尼西亚和菲律宾而言,预计将达到200%。 区域全面的经济伙伴关系(RCEP)可能会增长增长。 全球历史上最大的自由贸易协定 - 包括中国,印度尼西亚,日本和韩国在内的亚洲最大的经济体之一 - 涵盖了世界GDP和人口的30%。 尽管美国不是RCEP的一部分,但如果我们考虑到美国对该地区的投入成本的依赖,那么亚太地区的立场甚至更强。南亚和东南亚正在经历惊人的消费市场增长,到2030年,就印度尼西亚和菲律宾而言,预计将达到200%。区域全面的经济伙伴关系(RCEP)可能会增长增长。全球历史上最大的自由贸易协定 - 包括中国,印度尼西亚,日本和韩国在内的亚洲最大的经济体之一 - 涵盖了世界GDP和人口的30%。尽管美国不是RCEP的一部分,但如果我们考虑到美国对该地区的投入成本的依赖,那么亚太地区的立场甚至更强。
电力系统脱碳是环境可持续性的关键。从消费 - 生产的角度来看,对电力的发生和使用方式的变化非常关注,但是电力系统也依赖于连接和集成生产和消费的电网基础架构,并且还需要转换。同时,包括电网在内的电力系统中的新技术为生产和消耗能源的更具社会可持续性的方式提供了潜力。在实践中,变化很慢,不平衡,而且通常功能失调。一种社会技术过渡方法提供了有关为什么这样做的原因,看到电力系统不仅在技术和经济方面发生变化,而且还随着技术与社会和政治过程之间互动的结果而变化。该方法引起人们对在复杂的关键基础设施(例如电力和强大的安全机构逻辑)中实现快速过渡的特定挑战。本文将这种方法应用于大不列颠的案例,尽管以高级气候政策的形式对可持续性做出了坚定的承诺,但电网通常是对变革速度的限制。一方面这些高级目标与电力系统中的详细规则和实践之间的薄弱环节来解释英国过渡的性质。在英国案件中,所有权和网格监管的模式也可以解释,这些模式保护了现有人,并使新演员很难在更社会可持续的方向上开发该系统。