在过去的十年中,我们目睹了物理学对无分散频段的迅速增长[1-8]。在平坦带(FB)化合物中,由于这些频段的宽度非常狭窄,因此库仑能量是独特的相关能量尺度。这将这些系统置于高度相关的材料等级中,并打开了对异国情调和意外的植物现象和量子阶段的访问。不可否认,最引人注目的特征之一是在费米速度消失的化合物中可能具有高座位温度超导性(SC)的可能性[9-18]。SC的这种不合时宜的形式具有频带间的性质,并且由称为量子公制(QM)的几何量产生。QM连接到量子几何张量的实际部分[19,20],并提供了与FB Bloch特征状态相关的典型表面。到目前为止,这种不寻常形式的超导性的独特实验实现在魔法角度附近的扭曲的石墨烯(Moiré)中已经观察到了这种异常的超导性[8,21 - 26]。众所周知,在传统的BCS系统中,SC具有内在性质[27,28],相干长度ξc由ξBCS=ℏv f
在本文中,我们研究了Landis猜想的定量形式,该构想对实值溶液的指数衰减对二阶椭圆方程的实现溶液,平面中具有可变系数。,我们证明了Landis猜想的以下定性形式,对于W 1,W2∈L∞(R 2; R 2),V∈L∞(R 2; R 2; R 2; R)和U∈H1 Loc(R 2)真实价值的弱解决方案,用于-Dim to(R 2),用于-Div>,w2∈L。 u(x)| ⩽exp( - | x | 1+δ),x∈R2,然后是u。0。我们的证明方法的灵感来自Logunov,Malinnikova,Nadirashvili和Nazarov最近开发的方法,该方法已处理了R 2中的方程 - ∆ U + V U = 0。然而,出现了几个差异和其他困难。根据u的淋巴结组,建立了用于在合适的穿孔域中构建正乘数的新的弱定量原理。然后将所得的发散椭圆方程转换为非同质性∂
1。材料科学部,阿尔贡国家实验室,美国Lemont,美国2。美国布法罗大学布法罗大学物理与天文学系3.纳米级材料中心,Argonne National Laboratory,Lemont,USA纳米级材料中心,Argonne National Laboratory,Lemont,USA
摘要。在南极冰盖(AIS)对未来气候变化的反应中识别和量化不可还原和还原的不确定性对于指导缓解和适应政策的决定至关重要。然而,由于气候系统的固有过程而导致的不可还原内部气候变异性的影响仍然很少了解和量化。在这里,我们在选择三个耦合模型对比项目中的大气和海洋内部气候变异性中都表征了第6阶段(CMIP6)模型(UKIP6)模型(UKESM1-0-LL,IPSL-CM6A-LR和MPI-ESM1.2-HR),并估计它们对SEAR-TEL-VEL-VEL-VEL-21 CONTER SESUIRE估算的影响。为了实现这一目标,我们使用了由海洋通过参数化的基础熔化驱动的独立冰片模型,并通过大气层通过所符合的表面质量平衡估计值。南极内部气候变异性的大气成分在三种CMIP6模型中具有相似的振幅。相反,海洋成分的幅度在很大程度上取决于气候模型及其在海洋中对流混合的表示。海冰产量的低偏见和过度地分层的海洋导致缺乏深对流的混合,从而在冰架腔入口附近导致海洋变异性较弱。内部气候变异性会影响南极对海平面变化的贡献,直到2100,根据CMIP6模型的不同。这可能是一个较低的估计值,因为CMIP模型中内部气候变化可能被低估了。大气内气候变化对表面质量平衡的影响使海洋内部气候变异性对动态冰截面质量损失的影响增加了2至5倍,除非在Dronning Maud区域以及Amundsen,Getz和Aurora盆地中,这两个贡献都可能取决于CMIP模型。基于这些结果,我们建议冰盖模型预测考虑(i)(i)几种气候模型和单个气候模型的几个成员来说明内部气候变异性的影响,以及(ii)纠正历史气候强迫当前观察结果时的较长时间时期。
摘要。大气湍流通常会阻碍远距离光学成像应用。湍流对成像系统的影响可以表现为图像模糊效应,通常通过系统中存在的相位失真来量化。模糊效应可以根据沿传播路径测量的大气光学湍流强度及其对成像系统内相位扰动统计的影响来理解。获取这些测量值的一种方法是使用动态范围的瑞利信标系统,该系统利用沿传播路径的战略性变化的信标范围,有效地获得影响光学成像系统的像差的估计值。我们开发了一种从动态范围的瑞利信标系统中提取断层扫描湍流强度估计值的方法,该系统使用 Shack - Hartmann 传感器作为相位测量装置。介绍了从快速序列中获得的战略性范围变化的信标测量中提取断层扫描信息的基础,以及典型湍流场景的建模示例。此外,处理算法还用于模拟孤立强湍流层的识别。我们介绍了所选处理算法的基础,并讨论了该算法作为大气湍流分析方法的实用性。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.59.8.081807]
“因此,据我们所知,它们是第一类以三阶响应为主要非线性响应的材料。此外,我们表明,由于这些材料中的自旋分裂较大,这种响应非常大。此外,交替磁体的弱自旋轨道耦合(与磁交换项相比)也出现在其非线性响应中,为这类新材料提供了一种新颖的传输特性,而这种特性以前仅限于寻找线性异常霍尔电导率。”
在血氧水平依赖性 (BOLD) 对比度的功能性磁共振成像 (fMRI) 中,梯度回忆回波 (GRE) 采集具有高灵敏度,但会遭受磁化引起的信号丢失,并且缺乏对微血管的特异性。相反,自旋回波 (SE) 采集以降低灵敏度为代价提供了更高的特异性。本研究引入了非对称自旋回波多回波平面成像 (ASEME-EPI),该技术旨在结合 GRE 和 SE 的优点,用于高场临床前 fMRI。ASEME-EPI 采用自旋回波读数,然后是两个非对称自旋回波 (ASE) GRE 读数,提供初始 T2 加权 SE 图像和后续 T2 ∗ 加权 ASE 图像。在 9.4 T 临床前 MRI 系统上实施了该技术的可行性研究,并使用北方树鼩的视觉刺激进行了测试。将 ASEME-EPI 与传统 GRE 回波平面成像 (GRE-EPI) 和 SE 回波平面成像 (SE-EPI) 采集进行比较,结果表明,ASEME-EPI 实现了与 GRE-EPI 相当的 BOLD 对比噪声比 (CNR),同时在激活图中提供了更高的特异性。ASEME-EPI 激活更多地局限于初级视觉皮层 (V1),而 GRE-EPI 则显示激活超出了解剖边界。此外,ASEME-EPI 还展示了在 GRE-EPI 遭受信号丢失的严重场不均匀区域中恢复信号的能力。ASEME-EPI 的性能归因于其多回波特性,允许 SNR 优化的回波组合,从而有效地对数据进行去噪。初始 SE 的加入也有助于在易受敏感伪影影响的区域恢复信号。这项可行性研究证明了 ASEME-EPI 在高场临床前 fMRI 中的潜力,在解决高场强下 T2 ∗ 衰减的挑战的同时,在 GRE 敏感性和 SE 特异性之间提供了一种有希望的折衷方案。
1 Laboratory of Study of Microstructures, Onera-CNRS, University Paris-Saclay, BP 72, 92322 CHECTILLON CEDEX, France 2 University Paris-Saclay, UVSQ, CNRS, GEMAC, 78000, Versailles, France 3 Tim Taylor Department of Chemical Engineering, Kansas State University Manhattan, KS 66506, USA 4 Laboratory of Multimate and Interfaces, UMR CNRS 5615, Univ Lyon University Claude Bernard Lyon 1, F-69622 Villeurbanne, France 5 Laboratory Mateis, UMR CNRS 5510, Univ Lyon, INSA Lyon, F-69621 Villeurbanne, France 6 Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044,日本7电子和光学材料研究中心,国家材料科学研究所,1-1 Namiki,Tsukuba,Tsukuba 305-0044,日本(日期:
b' 在本研究中,我们报告了超快速瞬态热带 (THS) 技术用于测量氮化铝 (AlN) 薄膜各向异性热导率的实现情况。AlN 薄膜是通过在硅基板上制备的氧化硅 (SiO 2 ) 薄膜上在低温 (> 250 C) 下生长的反应性直流磁控溅射制备的。使用产生超短电脉冲\xc2\xad ses 的实验装置对热导率进行精确测量,并在纳秒和微秒时间尺度上电测量随后的温度升高。在 AlN 加工之前,将电脉冲施加在 SiO 2 上图案化的金属化条带内,并在 [0.1 \xe2\x80\x93 10 \xce\xbc s] 范围内选择的时间段内分析温度升高。当厚度从 1 \xce\xbc m 增加到 2 \xce\xbc m 时,AlN 横向平面(平面内)热导率分别从 60 增加到 90 W m 1 K 1(33 \xe2\x80\x93 44 W m 1 K 1)。这清楚地表明了 AlN 薄膜热导率的各向异性。此外,AlN 的体积热容量估计为 ~2.5 10 6 JK 1 m 3 。'