具有最佳能量分辨率的低能X射线对低能X射线的有效检测需要应用硅漂移检测器(SDDS)和高级应用程序特定的集成电路(ASIC)。与专门的基础科学项目一起,它们在物质科学中的广泛使用长期以来仅限于在低温下工作的单个选择的SDD元素。这是因为在相当详尽的平面技术生产过程中产生的限制,并且需要达到非常低的泄漏电流水平,以及对高度专业化的读取电子产品的需求。我们在这项审查工作中描述了RedSox合作的努力的具体结果,以开发基于多像素单片硅漂移探测器和定制设计的高级读数电子设备,能够处理用于高光谱的高光谱,但适用于应用程序的高光谱,但可用于代表各种应用程序。
将这些步骤和其他制造步骤结合起来,可以制造出复杂的器件和电路。这种在晶圆衬底上一步一步、一层层地制作电路的方法称为平面技术。平面工艺的一大优点是每个制造步骤都应用于整个硅晶圆。因此,不仅可以制造并以高精度互连许多器件以构建复杂的集成电路,还可以同时在一块晶圆上制造许多集成电路芯片。大型集成电路,例如中央处理器或CPU,一边可能有1-2厘米长,而一块晶圆(直径可能为30厘米)可以生产数百个这样的芯片。减小每个集成电路的面积,即减小器件和金属互连的尺寸,具有明显的经济优势,因为结果是每个晶圆可以生产更多的芯片,并降低每个芯片的成本。自1960年以来,世界各国已在平面微制造技术上投入巨资。该技术的变体还用于制造平板显示器、微机电系统 (MEMS),甚至用于 DNA 筛选的 DNA 芯片。本章的其余部分介绍了现代设备处理技术。也许最显著的进步发生在光刻技术(第 3.3 节)和互连技术(第 3.8 节)领域。这两个领域也是 IC 制造成本中占比最大的两个领域。