光子是光的基本量子,被广泛认为是能量的载体和电磁相互作用的介质。本文提出,光子还编码了全息平面内量子相互作用的“地址”,为跨时空协调量子现象提供了一种机制。基于《从许多不真实的世界解释中诞生的宇宙》中提出的框架,这一假设表明光子充当空间和信息坐标的信使,为波函数坍缩、量子纠缠和延迟选择实验提供了新的解释。这种方法将全息原理与量子力学相结合,有可能连接现代物理学的两个基础理论。
紧凑、轻便、高效和可靠的电源转换器是未来全电动飞机 (MEA) 的基础。支持航空航天工业电气化的核心要素是采用 SiC MOSFET 的电源模块 (PM)。为了充分利用 SiC 实现的高开关速度,并应对功率器件并联带来的挑战,必须研究新颖的 PM 概念。本文探索了高度对称的布局、低电感平面互连技术和集成缓冲电容器,以实现适用于 MEA 应用的高效、快速开关和可靠的全 SiC PM。对多项性能指标与最先进的全 SiC PM 的全面评估证明了所提出的设计方法和制造技术的优势。此外,通过集成温度和电流传感器,为开发的 PM 添加了智能功能,这对于 MEA 中电力电子的安全应用至关重要。在此背景下,展示了使用 MOSFET 的温度敏感电气参数进行在线结温估算,从而实现非侵入式(即无需专用传感器)热监测。此外,还设计了一个高度紧凑的栅极驱动器,减少了整个系统的体积和复杂性,并将其集成在 PM 的外壳中。最后,在 500V 和 200A 下测量 PM 运行时的开关波形,证明了低电感布局、集成缓冲器和栅极驱动器带来的性能改进。
摘要。在南极冰盖(AIS)对未来气候变化的反应中识别和量化不可还原和还原的不确定性对于指导缓解和适应政策的决定至关重要。然而,由于气候系统的固有过程而导致的不可还原内部气候变异性的影响仍然很少了解和量化。在这里,我们在选择三个耦合模型对比项目中的大气和海洋内部气候变异性中都表征了第6阶段(CMIP6)模型(UKIP6)模型(UKESM1-0-LL,IPSL-CM6A-LR和MPI-ESM1.2-HR),并估计它们对SEAR-TEL-VEL-VEL-VEL-21 CONTER SESUIRE估算的影响。为了实现这一目标,我们使用了由海洋通过参数化的基础熔化驱动的独立冰片模型,并通过大气层通过所符合的表面质量平衡估计值。南极内部气候变异性的大气成分在三种CMIP6模型中具有相似的振幅。相反,海洋成分的幅度在很大程度上取决于气候模型及其在海洋中对流混合的表示。海冰产量的低偏见和过度地分层的海洋导致缺乏深对流的混合,从而在冰架腔入口附近导致海洋变异性较弱。内部气候变异性会影响南极对海平面变化的贡献,直到2100,根据CMIP6模型的不同。这可能是一个较低的估计值,因为CMIP模型中内部气候变化可能被低估了。大气内气候变化对表面质量平衡的影响使海洋内部气候变异性对动态冰截面质量损失的影响增加了2至5倍,除非在Dronning Maud区域以及Amundsen,Getz和Aurora盆地中,这两个贡献都可能取决于CMIP模型。基于这些结果,我们建议冰盖模型预测考虑(i)(i)几种气候模型和单个气候模型的几个成员来说明内部气候变异性的影响,以及(ii)纠正历史气候强迫当前观察结果时的较长时间时期。
图3。(a)从左到右的顶行:边缘SEM,能量色散光谱(EDS)分析,显示了TIO 2纳米分布的分布以及高指数平面化a 〜4.25 µm和H〜1.8 µm的高指数平面底物S的红色激光衍射模式。 (b)中排:平面底物u的边缘SEM和红色激光衍射模式(A〜16 µm,H〜4.1 µm)。请注意大型无特征中央和六角形散射模式。(c)A 〜15 µm和H〜7 µm的近距离商业MLA的光学图像,以及(d)平面化弥漫性随机结构(基板M)的光学图像; OLED均在所有这些PE上用TiO 2纳米颗粒的高指数像素层制造。
•为了基于SC2节点,我们使用自换连接器和150 nm的电感器设计测试电路,并进行了制造和测试,例如DC-SFQ和SFQ-DC转换器,平衡比较器,SFQ和QFP逻辑,Ac-Ac-ships exhips cubsister,Ac-Ac-ships expressers,Ac-Ac-ships Expisters等。,我们通过在最接近堆栈中JJ层的NB层上实现了150 nm线宽电感的单层通过在NB层上实现150 nm线宽电感的单层,从而证明了电路密度的增加约2倍。对于具有600-µA/µm 2自换的约瑟夫森连接的移位寄存器,我们达到的电路密度为1.3∙107 JJS/cm 2,因此超过了每1 cm 2芯片的10m JJS阈值,在大尺度超尺寸超大型电子系统中应用所需的集成量表所需的集成规模所需。
摘要在这里,我们研究了PGP-SELBOX NCFET(在负电容FET中有选择性掩埋的氧化物上的部分接地平面)对FDSOI的负电容的影响。将铁电层放置在PGP-Selbox NCFET的栅极堆栈中,以产生负电容现象。铁电(Fe)材料与介电材料相似,但在其极化特性方面存在差异。fe-HFO 2由于其足够的极化速率具有高介电能力和更好的可靠性,因此将其用作铁电材料。分析了铁电材料参数的影响,例如强制场(E C)和恢复极化(P R)对NCFET的电容匹配的影响。模拟结果表明,R PE因子是P R与E C的比率,与更好的电容匹配密切相关。另外,还探索了铁电层厚度的变化对平均亚阈值摇摆(SS)的变化。还分析了PGP-Selbox NCFET的短通道效应(V Th rolo虫和DIBL)与铁电(T FE)的厚度之间的关系。模拟结果清楚地表明,PGP-SELBOX NCFET的SCES减少了,而I OFF fdsoi NCFET上的I OFF I OFF IN I ON IN I ON IN CES。对于拟议设备的铁罗 - 电动参数的优化值,在T Fe = 5nm时发现为50 mV/十年,比FDSOI NCFET(56 mV/十年)少。
如果标记位于海洋中,Google 会提供海底的海拔数据,而不是海平面。这就是为什么它显示 -58.61 英尺以下。GGB 塔的高度是 746 英尺,但它是高于海平面的高度。因此在这种情况下,您需要检查“高于海平面的高度”,以表明 746 英尺的高度是高于海平面的高度,而不是海底的高度。
由于大气中的热吸收温室气体的积累而导致的全球变暖正在推动气候系统的变化,这将对全球海岸线产生严重影响。海平面上升是低洼沿海社区的主要关注点。海洋和冰盖对全球变暖的响应时间很长,沿海环境越来越有可能在未来几十年中遇到危险,例如沿海淹没和侵蚀。海平面由于一系列物理过程而不会均匀增加。在Gippsland海岸线附近,由于东澳大利亚州当前对地区海平面的影响,海平面的上升将略高于全球平均海平面上升。全球变暖也在推动热带扩张,并在地球的主要气候和天气系统中向南变化。是西风腰带中风速的提高,这导致南大洋的波浪气候变化。这反过来可能会影响澳大利亚南部的海岸线。海洋和大气的变暖正在通过更大的风速和降雨量加剧恶劣的天气系统。这些各种因素将导致全球范围内的变化,并且由于当地海平面,风和波浪气候,严重的天气系统和吉普斯兰湖地区极端海平面的变化而对沿海危害产生了复杂的影响。
2.横向平面的静态稳定性主要由风向标导数(即C n b > 0 或 N b > 0 )和二面角导数(即C l b < 0 或 L b < 0 )决定